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ABSTRACT

This study offers a novel approach for benchmarking complex cognitive behav-
ior in artificial systems. Almost universally, Large Language Models (LLMs)
perform best on tasks which may be included in their training data and can be
accomplished solely using natural language, limiting our understanding of their
emergent sophisticated cognitive capacities. In this work, we created dozens of
novel items of a classic mental imagery task from cognitive psychology. The task
consists of following a series of short instructions (3-5 steps), performing basic
transformations on imagined letters and simple shapes to create a mental image
of an object, and finally recognizing and labeling the object. Traditionally, cog-
nitive psychologists have argued that this task is solvable exclusively via visual
mental imagery (i.e., language alone would be insufficient). LLMs are perfect for
testing this hypothesis. First, we tested several state-of-the-art LLMs by giving
text-only models written instructions and asking them to report the resulting ob-
ject after performing the transformations in the aforementioned task. Then, we
created a baseline by testing 100 human subjects in exactly the same task. We
found that the best LLMs performed significantly above average human perfor-
mance (9.4%-12.2% increase over the human average of 54.7%, p < .00001).
Finally, we tested reasoning models set to different levels of reasoning and found
the strongest performance when models allocate greater amounts of reasoning to-
kens. These results provide evidence that the best LLMs may have the capability
to complete imagery-dependent tasks despite the non-pictorial nature of their ar-
chitectures. Our study not only demonstrates an emergent cognitive capacity in
LLMs while performing a novel task, but it also provides the field with a new
task that leaves lots of room for improvement in otherwise already highly capable
models. Finally, our findings reignite the debate over the formats of represen-
tation of visual imagery in humans, suggesting that propositional reasoning (or
at least non-imagistic reasoning) may be sufficient to complete tasks that were
long-thought to be imagery-dependent.

1 INTRODUCTION

Large Language Models (LLMs) have progressed exponentially in the last few years, racing past
advanced benchmarks. However, the most popular benchmarks rely on reading comprehension
(Kočiský et al., 2018), information recall (Rein et al., 2023; Hendrycks et al., 2021), logical rea-
soning (Wang et al., 2024b), coding (Khan et al., 2023), or other similar tasks in principle solvable
only through text and prone to data contamination risks from preexisting information in their train-
ing dataset (Sainz et al., 2023). In recent months, questions about the scalability of complexity, the
appropriate usage of reasoning tokens, and the design and evaluation of reasoning tasks have been
raised despite LLM benchmark performance (Shojaee et al., 2025; Lawsen, 2025). Here, we present
a mental imagery task adapted from cognitive psychology that offers an opportunity for benchmark-
ing models in novel and sophisticated ways. We designed bespoke stimuli that we can be certain are
not in their training data and that, as we show below, leave room for great improvement in models’
performance (despite the best models outperforming humans). Moreover, our results suggest that
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LLMs may be capable of performing a mental imagery task long-thought to be unsolvable by relying
solely on language, offering a new challenge for cognitive psychology.

1.1 PICTORIAL VS. PROPOSITIONAL MENTAL IMAGERY

Cognitive psychologists have been embattled in the last fifty years in a heated debate about the
nature of mental imagery. Two opposing camps have proposed that mental imagery’s format is either
pictorial (e.g., Kosslyn (1973; 1996)) or propositional (e.g., Pylyshyn (1973; 2002)). Advocates of
the propositional view argue that the visual information contained in mental images can be captured
by propositional descriptions (i.e., discursive elements) in a language of thought, so tasks used to
prove mental images are in a pictorial format can all be solved through language or reasoning.
Pictorialists disagree.

One of the foundational studies of pictorial mental imagery is an object reconstruction task (Finke
et al., 1989). Subjects were required to visualize in their mind’s eye a series of combinations and
transformations of basic shapes and letters. Subjects then indicated what object the resulting con-
struction of shapes looked like in a free verbal report. The structure of this task is straightforward.
Simple shapes and letters are given in stages to the subject where transformations of the existing
figures (or the entire scene) follow (Figure 1). Between 2 and 4 sets of transformation instructions
are provided before the subject is asked to identify the final image.

The pictorial view of mental imagery vastly dominates psychology today (Pearson & Kosslyn,
2015; Pearson et al., 2015; Block, 2023; Zeman, 2024). According to it, success in this task (and
others like it) is only possible through the use of visual pictorial imagery (as opposed to logical
or propositional reasoning, but see Pylyshyn (2002)). The pictorial view has gained dominance in
the field through its appeal to evidence from neuroimaging studies showing similarities in neural
activity between visual and imagery tasks (Pearson et al., 2015; Naselaris et al., 2015; Dijkstra et al.,
2019) and, crucially, from mental imagery tasks (Shepard & Metzler, 1971; Kosslyn, 1973; Finke
et al., 1989; Pearson & Kosslyn, 2015). For example, in the Finke et al. object reconstruction task,
the final identification step is supposed to require a properly constructed image that subjects can
simply read off from their mind’s eye. Confidence in this view is so strong that some proponents go
as far as to think that solving this kind of visualization tasks is “virtually impossible to do without
using [pictorial] imagery” (Finke, 1990, p. 19).

Step 1 Step 2 Step 3

Imagine a capital 
letter “D”.

From there, imagine 
the figure rotated 90 
degrees to the left.

From there, imagine a 
capital letter “J” 

attached to the bottom 
center of the figure.
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Figure 1: One of the instruction sets introduced in Finke et al. (1989). Here, subjects are meant to recognize
from the resulting mental image that the final imagined object looks like an umbrella. The instructions have
been rewritten to be clearer both for prompting LLMs, as well as for human understandability.

1.2 SOLVING MENTAL IMAGERY TASKS WITHOUT MENTAL IMAGERY?

Many tasks in everyday life involve the usage of mental imagery to some degree (e.g., navigation,
planning and decision-making, mental simulation, episodic memory, organization, spatial reason-
ing, emotional engagement and regulation, among others; Bocchi et al. (2017); Shepard & Metzler
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(1971); Palombo et al. (2018); Wheeler et al. (2000); Byrne et al. (2007); Holmes & Mathews
(2010); Krasich et al. (2024)). Unsurprisingly, most humans report having conscious mental im-
agery. However, a small percentage (1-4%) of the population—aphantasics—report no conscious
mental imagery (Wright et al., 2024; Faw, 2009; Zeman et al., 2015; Dance et al., 2022; Zeman,
2024). If the pictorial view were correct, we would predict aphantasics to be incapable of perform-
ing mental imagery tasks at all; but this is not what we find (Blomkvist, 2023; Kay et al., 2024;
Pounder et al., 2022; Bainbridge et al., 2021). Aphantasics perform (almost) at the same level as
people with imagery. While there is a possibility that they rely on unconscious visual mental imagery
(Nanay, 2021; Michel et al., 2025), aphantasics tend to report that they use verbal strategies (Keogh
et al., 2021; Kay et al., 2024), giving renewed credence to the possibility of a purely propositional
mental imagery.

In the human mind, language and imagery are deeply intertwined. It can be hard to evaluate the
introspective reports of subjects (aphantasic or not) about the strategies that they use, as humans
in general do not have good access to the inner processes that support their behavior (Nisbett &
Wilson, 1977); or they may confabulate about the actual contents of their mental images (Bigelow
et al., 2023). State-of-the-art artificial systems such as LLMs offer a unique opportunity to test
a system whose architecture and processing is primarily linguistic. Nothing truly analogous to a
visual (i.e., pictorial) mental imagery seems available to LLMs.1 Does this mean that there are
types of reasoning that are just not available to them? Or is it possible that LLMs rely solely on
their language-trained and language-processing architecture to achieve similar goals as humans who
experience mental images? After all, as mentioned earlier, aphantasics are reported to perform at
the same levels as imagers in a plethora of tasks previously thought to require mental imagery. The
imagery debate does not seem, after all, to have been completely settled.2

1.3 MOTIVATION FOR LLM MENTAL IMAGERY TASKS

To test whether LLMs are capable of solving tasks designed to probe pictorial mental imagery de-
spite relying exclusively on text processing, we gave several state-of-the-art models (Claude, Gem-
ini, OpenAI) expanded, bespoke instruction sets following Finke et al. (1989)’s approach described
above. We also asked models with image capabilities to generate images in each step and to consider
them in their answers. As the object reconstruction task we used is compositional (different images
or aspects of images from each step need to be combined in subsequent steps to obtain the final
answer), we conjectured that image-aided reasoning could increase performance, especially if the
pictorial imagery framework is correct, and if forcing the models to produce and consider images in
the intermediate steps could alter their approach to the task. (See Appendix C for further discussion
about this approach.) Finally, we obtained a human baseline for for this task by testing 100 human
subjects.

Whether LLMs can perform at a human level on this task is of intrinsic interest to understand what
these new models can achieve. This type of object reconstruction is an ideal challenge for LLMs.
The task is structured entirely through natural language (both the input and the output); the results are
easily evaluated; and we included newly created examples that could not possibly be in their training
set. Moreover, due to the nature of the task and the fact that it can be expanded, a human baseline
can be straightforwardly established at any point. Additionally, LLMs performing at or beyond the
human baseline would constitute evidence for LLM propositional reasoning-based imagery. The
results from this task are also of interest for the cognitive science debate about the format(s) of
mental imagery, since it would put to a test the idea that mental imagery necessarily involves some
pictorial component.

1While recent multimodal extensions have been trained not just on linguistic corpora but on images as well,
and they can take images as input and produce them as output, they still rely on high-dimensional embeddings
that are not visual in nature Kiela & Bottou, 2014; Kim et al., 2020; Radford et al., 2021. Current models
certainly do not have a dedicated visual module built-in and they do not process tokens in a visual format.

2Aphantasia research has recently re-opened questions regarding the nature of mental imagery represen-
tations (Lorenzatti, 2025; Lebon, 2025). Proposals have ranged from unconscious pictorial representations
(Michel et al., 2025; Nanay, 2021) and absent pictorial representations to a preserved spatial imagery despite a
diminished or absent object imagery Bainbridge et al., 2021; Phillips, 2025. The door for non-pictorial mental
imagery has certainly reopened.
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1.4 RELATED WORK

Recent publications exploring LLMs’ capacities have included notable work on classic cognitive
tasks, e.g., evaluating spatial cognition as an emergent property of frontier models (Ramakrish-
nan et al., 2025; Wu et al., 2024; Ivanova et al., 2025), or measuring the stability of psychometric
attributes (Li et al., 2024). Additionally, benchmarks for spatial and visual reasoning have been
established (Chollet et al., 2025). More broadly, emergent cognitive properties of artificial systems
have also been studied beyond just those of the transformer architecture. There is a wealth of accu-
mulating evidence showing that Deep Neural Networks (DNNs) are useful tools for understanding
human cognition in general (Demszky et al., 2023; McGrath et al., 2024; Leshinskaya et al., 2025;
Frank & Goodman, 2025) and visual perception in particular (Chen & Bonner, 2025; Yamins et al.,
2014). Finally, recent attempts to enhance LLMs’ visual reasoning capacity (e.g., spatial planning,
visual completion) have explored the capabilities of visual-language models (Yang et al., 2025).
While this last study offers an interesting approach, here we focus on the foundational question of
whether mental imagery tasks (rather than visual tasks) can be solved by frontier LLMs on the sole
basis of linguistic manipulation. We discuss several other related topics in Appendix C.

2 EXPERIMENTAL DESIGN

We used 60 instruction sets for an object recognition task. The set consisted of 48 completely novel
examples, which we created specifically for this study, and the remaining 12 were taken from the
original study by Finke et al.. Our new items varied in number of steps (2 to 4), final object, and
overall complexity (Figure 2). We aimed to keep Finke et al.’s restriction that the final shape should
not be identifiable until after the final transformation. Some of the tasks resulted in the same (or
very similar) final shapes (e.g., three different ways of arriving at a shape that represented “glasses”
or “binoculars”), but as all combinations were unique and involved novel transformations, we
believe this is not of concern.

Step 1 Step 2 Step 3

Imagine two 
lowercase letter “o” 
next to each other.

From there, imagine 
the two figures pressed 

together so that they 
are just touching.

From there, imagine 
another lowercase 

letter “o” just touching 
the top of the figure in 

the center.
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Step 4
From there, imagine a 
lowercase letter “v” 

just touching the 
bottom of the figure in 

the center.

Figure 2: One of our new instruction sets demonstrating the slightly increased cognitive complexity and more
ambiguous canonical form (“balloons”, “flower bouquet”, or “ice cream”, among others). Note the usage of
two letters in the first step, the abstract reference to existing symbols and scenes, and the final shape not being
determinable until the final step.

Our new items integrated several changes to the original ones developed by Finke et al. (1989).
Most notably, we allowed one step to include up to two letters, rather than just one, thus increasing
cognitive load (Miller, 1956; Farrington, 2011) but allowing more varied scenes. Additionally, we
did not restrict the final image to having only one canonical form. The intended canonical form was
not always immediately obvious, though at least one form was always clear. Our items’ difficulty
had a wider range, which we confirmed after establishing a new human baseline (see Appendix 2.3).
The complete instruction-sets are included in the project’s GitHub repository (see Appendix B).

Finally, we updated the language in the 12-items taken directly from Finke et al. to match the format
of our improved versions. Notably, ambiguous language was clarified (e.g., specification of capital
versus lowercase letters), subsequent instructions were modified to reference earlier instructions only
abstractly (e.g., “the existing symbol” versus “the ‘E”’), and 180 degree rotations were changed to
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flips (when vertical) or mirroring (when horizontal). We did not ask models or human subjects to
guess the resulting shape at each step, unlike the original experiment, only its final form.

We should highlight that because these 48 new items were created ex novo for this experiment, it is
highly improbable that any of them were present in the training data of any of the LLMs, and it is
materially impossible that all of them were. This is of crucial importance for testing the emerging
reasoning capacities of these types of models.

2.1 IMAGE-AIDED INSTRUCTIONS

For each model that had a compatible image generation pipeline (excluding GPT-53), we ran a
modified version (Image-Aided) of the standard version (Language-Only) described above. In this
modified image-aided version, models were prompted to generate images and modify those images
(see Supplemental Figure S1 for an example), rather than imagine. Whenever possible, we kept
reasoning enabled within the models. For Gemini we used the native image generation capabilities
of 2.0 Flash’s image generation preview version, and, for OpenAI, we used the native GPT-image-1
image generation tool integration.

2.2 MODEL SELECTION

We gave the 60 instruction sets to three consumer accessible groups of models: Claude, Gemini,
and OpenAI. For OpenAI reasoning models, ‘reasoning’ was enabled and ‘reasoning effort’ set to
‘high’. For Gemini models, ‘thinking’ was set to ‘dynamic’. For Claude Sonnet 4 we allocated
4000 tokens for extended thinking; for Claude Opus 4.1 we allocated 9000. For models that allow
temperature modification, the value was set to 0.1 (we discuss some impacts of this in Appendix
E.3). All other parameters were kept at default values. Our specific model choices are outlined in
Supplemental Table S1.

For our initial analysis, we performed each experiment twice: once in a single context for all instruc-
tion sets (single-context), and once with a new context for each instruction set (multiple-context).
This was done to see whether there was any significant difference in performance due to in-context
learning (Dong et al., 2024; Wurgaft et al., 2025). The instruction sets were presented to each model
in the same random order.

2.3 HUMAN BASELINE

We recruited 100 adult participants online. Each was given a random subset of 15 of the 60 instruc-
tion sets (Finke et al. sets and our 48-Item expansion set) for a total of 1500 submitted answers.
Each instruction set had between 21-27 responses. The instruction sets were administered through
a Qualtrics XM survey in a random order. To prevent textual biases from impacting the results (e.g.,
seeing a ‘d’ on a screen affecting the specific shape of the imagined ‘d’), the instructions were played
through audio recordings. Each occurrence of a letter in an instruction was modified to include the
corresponding phonetic word from the International Radiotelephony Spelling Alphabet to increase
the clarity of individual instructions (e.g., “Imagine a B, as in Bravo.”). All audio was recorded by
the same speaker (Author M.M.) and there was only one version of each audio instruction. If the
same instruction appeared in two different sets, each set was given unique recordings. Participants
were able to listen to the instructions as many times as needed, and were asked to imagine shapes
without any visual aids (e.g., drawing). Finally, participants completed the Vividness of Visual
Imagery Questionnaire (VVIQ) to assess their overall mental imagery capacity (Marks, 1973) (see
Appendix D.3). Subjects participated for payment and were recruited through the online platform
Prolific with an evenly distributed gender quota. To ensure intelligibility of the instructions, only
subjects from the United States who reported English as their first language were sampled.

3GPT-5 was released after we collected data on our image paradigm and found that it did not succeed for
other models. As no further upgrades for GPT-image-1 were additionally released we chose not to test GPT-5
with GPT-image-1.
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2.4 PERFORMANCE EVALUATION

Given the subjective nature of the task (e.g., Are “balloons”, “flower bouquet”, or “ice cream”
all equally valid as an answer for the instructions in Figure 2?) and the potential for correct but
variable answers, we recruited 376 naı̈ve subjects on Prolific to grade answers (LLM and human)
from the studies described above. Subjects were shown a label along with a corresponding image
approximating the final outcome of a set of instructions. They were asked to rate the reasonableness
of the label describing the image we created in lieu of target mental images. We collected 2030
unique answers from LLMs and humans in our mental imagery experiments. We excluded 122
of these answers because they were nonsensical, explicitly non-answers (e.g., “unsure”, “I don’t
know”; see Appendix E.2 for discussion), restatements of the instructions, or sexually explicit. We
ended with a final set of 1911 valid answers to use as labels. Each subject grader was given 30 of
these labels with the prompt: “How well does this image represent <label>?” and they were asked
to respond on with a 5-point scale: “Not at all”, “A little”, “Moderately”, “A lot”, “Completely”. In
addition, the authors provided independent “expert” evaluation of all of the labels. The final score
used to grade each valid response in our study was a weighted average of the expert’s grades and the
outsourced grades given by the Prolific subjects (see Appendix D.1).

3 RESULTS

3.1 HUMAN PERFORMANCE

Humans subjects exhibited an average performance of 54.7% (of the maximum possible score) in our
60-item task. We established that all of the 48 new instruction sets were doable (though the hardest
ones only received one or two meaningful answers from the entire subject population). Subjects
received close to perfect scores on the easiest instruction sets, with only one or two non-meaningful
answers. This offered us a good range of difficulties which was optimal for testing both human and
artificial model abilities. (See Appendix D.2 and Supplemental Figure S11 for more information on
item difficulty estimation and difficulty distribution).

When we looked exclusively at our 48 newly designed items, we observed a comparable perfor-
mance between our subjects’ performance and that of Finke et al.’s subjects in their original 12
items (52.6% and 56.1% of the maximum possible score, respectively).4. Notably, our subjects’
performance on the 12 items following Finke et al.’s was higher (63%). This difference could po-
tentially owe to the fact that our set has a wider range of difficulty levels both in terms of number of
steps per trial and in terms of compositionality, complexity of transformations, and recognizability
of the final shape (all of which were explicitly desired traits in our experiment), or it could be simply
due to our rewritten instructions.

Finally, subjects’ VVIQ scores were well within expected bounds and we found a small negative
correlation between performance and mental imagery capacity VVIQ (see Appendix D.3 for further
discussion of VVIQ results).

3.2 O3 AND GPT-5 VS. EVERYTHING ELSE

OpenAI’s o3 model family, as well as GPT-5, vastly outperformed every other model, surpassing
the human baseline (humans were 9.4% below o3, which performed at 64.1%, χ2 = 28.631, p <
.00001, CI = [−0.128,−0.06]; humans vs o3-Pro: −11.9% difference, χ2 = 45.76, p < .00001,
CI = [−0.153,−0.086]; humans vs GPT-5: −12.3% difference, making GPT-5 the best model at
67%, χ2 = 33.302, p < .00001, CI = [−0.163,−0.082]).5 We show the stark gap between o3,
GPT-5, the human baseline, and every other model we tested in Figure 3. Based on our scoring
methodology (Appendix D.1), we graded the outputs of each model (and the human baseline) and
calculated the maximum possible score (see Table 1 for full scores; see Supplemental Table S5 for

4In Finke et al., each participant provided responses for six items. We normalized Finke et al.’s scores to
our scoring-system by assigning 5 points for each correct and 1 point for each incorrect answer to each label
(the minimum score in our paradigm)

5Statistical significance in the main results presented in Figure 3 and Table 1 was determined after correcting
for multiple comparisons using Bonferroni: alpha = 0.05 / 13 = 0.0038.
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Figure 3: Performance results in humans and LLMs. Data shows proportion of maximum possible score for
all tested models. Only GPT-5, o3, and o3-Pro significantly surpass the human baseline. Error bars indicate
95% confidence intervals.

results of the 48-novel item subset and Supplemental Table S4 for results of the 12-items following
Finke et al.).

The only other models to perform non-significantly different from the human baseline on our task
were o4-mini (χ2 = 0.577, p = .4477, CI = [−0.025, 0.059]) and Claude Opus 4.1 (χ2 = 0.299,
p = .5845, CI = [−0.042, 0.077]). Somewhat surprisingly, we found that adding images to o3 sig-
nificantly decreased the model’s performance although it remained comparable to the human base-
line (o3 vs. o3 with GPT-image-1: 8.8% difference, χ2 = 16.139, p < .0001, CI = [0.045, 0.131],
humans vs o3 with GPT-image-1: χ2 = 0.143, p = .7057, CI = [−0.037, 0.024]). The older or
cheaper models, however, performed very poorly across the board. We looked at two other models
from OpenAI: ChatGPT-4o and GPT-4.1 (with and without images), both performed significantly
worse than the o3 model family (see Appendix E.5.1). Claude Sonnet, Gemini 2.5 Pro, and Gemini
2.0 Flash all performed poorly. Gemini 2.0 Flash with images performed the worst of all models we
tested (outside of initial testing of open weight models, see Appendix E.4).

Finally, we also measured the effect of the ‘reasoning effort’ parameter on the best performing
OpenAI models. We found that higher reasoning effort led to improved results on our task (see
Appendix E.1 and Supplemental Figures S4 and S5).

3.3 IMAGE-AIDED REASONING

Generating images, and solving the task using them, produced disappointing results. Perhaps unsur-
prisingly, in all cases of our image-aided paradigm the model performance dropped or, at best,
stayed the same: o3 vs. o3 with GPT-image-1 (8.8% difference; χ2 = 16.139, p < .0001,
CI = [0.045, 0.131]); GPT-4.1 vs. GPT-4.1 with GPT-image-1 (4.2% difference; χ2 = 1.999,
p = .1574, CI = [−0.015, 0.099]); Gemini 2.0 Flash vs. Gemini 2.0 Flash with images (4.9%
difference; χ2 = 1.854, p = .1733, CI = [−0.02, 0.117]). We note, however, that o3’s strong
performance allowed greater room for a significant decrease. It is unclear what the overall effect
of image-aided reasoning is, as the models still found some success (though diminished), and more
exploration of its effects is needed (Yang et al., 2025; Wu et al., 2024). Notably, modification of
the ‘reasoning effort’ hyperparameter led to almost identical results, unlike what happened with the
standard models without images (See Appendix E.1.)
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3.4 MULTIPLE- VS. SINGLE-CONTEXT

We initially ran each model (excluding Gemini 2.0 Flash with images and o3 with images due to
token limitations) in both a single context for all instructions as well as in a new context for each
set of instructions (multiple-context). In our analysis of o3 and o3-Pro we found that including
previous examples in context did not significantly change the overall performance (SC vs. MC
in o3 χ2 = 0.1064, p = .7443, CI = [−0.056, 0.083]; and in o3-Pro χ2 = 0.02, p = .887,
CI = [−0.061, 0.075]). This indicates that in-context learning was not significantly beneficial for
this task. Because of this, we did not differentiate between context types for statistical analysis and
instead analyzed results from both types of context together. Additionally, when we further tested
several additional models with different reasoning levels, we only tested them in multiple-context.
We graph the performance of the context interval variations of all tested models in Supplemental
Figure S2.

Table 1: Human and LLMs scores

Agent Score Max Possible Score Proportion
Humans 4098.217 7490 0.5472
o3∗∗∗ 577.390 900 0.6415
o3 + GPT-image-1ns 664.182 1200 0.5535
o3-Pro∗∗∗ 599.621 900 0.6662
GPT-4.1 254.862 600 0.4248
GPT-4.1 + GPT-image-1 229.827 600 0.3830
o4-minins 318.131 600 0.5302
Gemini 2.5 Pro 227.074 600 0.4618
Gemini 2.0 Flash 227.982 600 0.3425
Gemini 2.0 Flash + Images 99.345 300 0.3800
Claude Sonnet 4 250.140 600 0.4169
Claude Opus 4.1ns 158.819 300 0.5294
GPT-5∗∗∗ 401.883 600 0.6697

Model in bold indicates highest performer in the group; the human baseline is in green; models in purple
surpass the human baseline significantly [*** p < .001]; models in blue are not significantly [ns] different from
the human baseline and the rest in white are significantly lower [p < .001]. Significance and non-significance
determined after Bonferroni correction for multiple comparisons. See Appendix E.5.1

4 DISCUSSION

Our results were surprising. LLMs successfully accomplished a task in which humans are believed
to rely (almost) exclusively on visual mental imagery. They also offer an interesting window into
the capacities of advanced artificial language systems to provide insight on tasks that are thought
to require something beyond what language models are capable of. GPT-5 and the o3 Language
Reasoning Model family outperformed humans across the board. These models do not have any
(known, immediate) access to any form of image processing built-in by default. In fact, we can infer
that no image generation was being used unless explicitly called upon due to the decreased cost of
simple inference. Thus, these models should not have been able to complete our task so successfully
given the dominant pictorial views on mental imagery. Perhaps these LLMs completed our task via
language token manipulations.

However, there is an alternative explanation, potentially orthogonal to the pictorial and propositional
accounts. On this view, mental imagery is not a monolithic capacity; rather it must be distinguished
into two capacities: spatial and object imagery (Phillips, 2025; Teng, 2025). According to this
distinction, imagining objects and their surface features is supported by neural and psychological
mechanisms that are different from the mechanisms supporting imagining the spatial relations be-
tween objects. Evidence for this position comes from neurological patients with lesions resulting
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in preserved spatial reasoning abilities despite losing conscious mental imagery (Farah, 1988). It is
also supported by behavioral work with aphantasics who exhibit normal results in spatial imagery
questionnaires and (almost) normal performance in mental imagery tasks that rely heavily on spa-
tial relations such as remembering a scene and mental rotation, which is clearly related to the task
we used here (Bainbridge et al., 2021; Dawes et al., 2022). (See Appendix D.3 for discussion of
aphantasic subjects in our sample.)

While LLMs’ architecture, training, and data processing is primarily based on text, text-only mod-
els can acquire representations of spatial concepts (Patel & Pavlick, 2022) and develop internal
representations matching a spatial layout solely through procedural descriptions of moving through
spaces. Moreover, embeddings from different modalities (e.g., vision and text) can be mapped to
a shared representational space (Radford et al., 2021; Girdhar et al., 2023). It is thus possible that
while relying solely on textual token manipulation, the most advanced LLMs are still able to extract
the required spatial relations of the objects in each step of our instruction sets to perform at or above
human level. This interpretation may help bridge different theories of mental imagery.

Frontier LLMs give a new perspective to the debate on the formats of mental imagery, re-opening
questions about the necessity of iconic mental imagery and the adequacy of classic tasks to test it.
Furthermore, our results also open an important question in computer science about the kind of tasks
that our most advanced language models can accomplish providing an opportunity for new, complex
benchmarks in sophisticated cognitive tasks.

5 CONCLUSIONS

Advancements in Large Reasoning Models have progressed so quickly that testing all their possible
emergent properties poses serious challenges. Our research shows how to test one such property:
propositional reasoning-based mental imagery. We determined that GPT-5 and the o3 family of
models is more than capable of solving problems traditionally thought to require visual imagery.
Furthermore, we note the difference in capabilities between OpenAI, Claude, and Gemini models
in this form of advanced reasoning. Our instruction sets were created ex novo, so we can be confi-
dent that the performance we recorded is not an artifact of contaminated training data. Additionally,
models did not universally succeed on the original items, which could exist within their training
data. Our results could be deeply impactful, both for the artificial intelligence community, for exam-
ining and identifying a capability not yet measured within the most advanced models, and also for
the cognitive science community, for discovering results that provide insight into the strategies and
techniques used to accomplish imagery-dependent tasks. Through further analysis and experimen-
tation on Large Language Reasoning Models, we may discover more about different ways in which
the human mind can work (see Appendix F for Future Work).

6 LIMITATIONS

Due to the cost of inference in the most advanced large reasoning models, the amount of data col-
lected for our task is insufficient to make strong conclusions about similarly performing models
(e.g., to differentiate between the performance of o3-Pro and GPT-5). Additionally, as o3 and GPT-
image-1 are very compute-heavy models, data collection takes significant time and computational
resources, which is an important consideration both from a practical and a theoretical standpoint
when benchmarking. This characteristics of the models prevent multiple iterations of data collec-
tion due to economic considerations (which is why we did not run any model more than 3-4 times).
Notably, GPT-5 reaches similar performance to o3-Pro in significantly shorter time, though with
more reasoning tokens, pointing to GPT-5’s higher processing efficiency. Finally, the state-of-the-
art frontier models are all closed weight and closed architecture. We therefore cannot speculate
about the underlying causes of our results or the difference in performance across models.

7 ETHICS STATEMENT

The experiments involving human participants were approved by Northeastern University’s Institu-
tional Review Board. All data provided by the authors’ that had any identifiable information has
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on the technical setup of our project in Appendix G, including information on our Python and R
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A USAGE OF LARGE LANGUAGE MODELS

Outside of the usage as described in the rest of this paper, LLMs were used to generate code and
documentation for running the experiments and statistical analyses. All code was manually checked
and verified post-generation to ensure soundness.

In order to ensure prevention of data contamination: other than in testing, no LLM was given access
to the instructions or any other data that may allow improved performance on the task. Additionally,
we disabled sharing input and output data with the parent company of each model we used in our
experiment whenever possible.

B ACCESS TO CODE AND DATA

Our code and data is accessible under MIT License in our GitHub repository (https://github.
com/subjectivitylab/artificial_phantasia). All human subject data has been de-
identified. Please refer to the README.md file in the repository for usage and explanatory infor-
mation regarding the repository.

We provide code to run the experiment, view and re-perform our data analysis, and generate surveys
for Qualtrics XM. Our dataset includes the instructions used for our task (along with the intended
canonical form), the de-identified data from both humans and LLMs, the de-identified response
ranking data, and the image representations of each intended image (the images from Finke et al.,
1989 are their original versions for replicability).

C EXTENDED RELATED WORK

Since the advent of LLMs, many groups have explored their compositional components. Notably,
this has included investigating the ability to answer compositional subproblems without successfully
answering the overall problem (Press et al., 2023), evaluating linguistic compositional generation
(Kim & Linzen, 2020), and evaluating compositional generation in images (Liu et al., 2022). No
existing work has looked at the composition of image-like propositions in LLMs. Furthermore,
research on how LLMs think in general (Shiffrin & Mitchell, 2023; Liu et al., 2025; Lombrozo,
2024; Pavlick, 2023) and how they may access their own processes Plunkett et al. (2025); Betley
et al. (2025) is a crucial stepping stone for further understanding how LLMs may perform imagery
tasks via propositional reasoning.

D EXTENDED PERFORMANCE EVALUATION - HUMANS

D.1 GRADE WEIGHTING

In our initial work on grading the task we ran into two key issues: first, the issue of subjectivity as
described previously; second, some answers were extremely literal and, as such, did not represent a
new construction. Our initial plan was to grade similarly to Finke et al. (1989), but the subjectivity
issue necessitated us exploring different options.

After recruiting our first set of subjects, we discovered a key issue with the responses. Namely,
hyper-literal responses (e.g., ‘bd’ after asking subjects to imagine a ‘b’ next to a ‘d’ and pressing
them together) were graded very highly. We attempted to control for this by instructing subjects to
rate such examples poorly, but, unfortunately, these were routinely graded highly. Our solution to
this issue was to have the authors grade all 1911 responses in addition to the 376 naäve subjects.

Almost all responses had 5 subject ratings, a few responses had 6, a very small number 7, and a
single response 4 due to the random distribution methods of Qualtrics XM. In all cases we generated
a ‘normal score’ from the mean of all of the responses. In addition, we generated an ‘expert score’
from the mean of the authors’ ratings. Our final ‘overall score’ was the average of the ‘normal score’
and the ‘expert score’. All scores for all responses used in grading are available in our dataset (see
Appendix B).
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The subject ratings were distributed (Supplemental Figure S8) very heavily towards “Not at all”
(or a grade of 1) due to most examples being difficult to justify (due to misconstructions, possible
confusion in the case of humans, or possible hallucinations in the case of LLMs). The expert scores
(Supplemental Figure S9) were distributed similarly, but with a noticeably higher occurrence of
“Completely” (or a grade of 5). Knowledge of the creation of the items and their intended canonical
result, along with a reduced bias towards the drawn representations of the intended mental image
likely account for this.

D.2 DIFFICULTY ANALYSIS

Concurrently with the experimental task, we asked all participants to report how clear they found
the instructions, as well as how identifiable they found the final mental image (both on a 5 point
scale). These ratings as well as their standard deviations as a measure of consistency, along with the
ratio of unique responses given to each answer, the number of instruction steps, and the number of
imagined objects, were used to rank each of the instruction sets on the following weighted difficulty
scale:

Item Difficulty = (0.20× Total Instruction Steps)
+ (0.20× Total Objects)
+ [0.15× (6− Mean Clarity Ratings)]
+ [0.15× (6− Mean Identifiability Ratings)]
+ (0.10× Clarity Ratings Standard Deviation)
+ (0.10× Identifiability Ratings Standard Deviation)
+ (0.10× Unique Response Ratio)

Unique Response Ratio =
Unique Responses Per Label
Total Responses Per Label

Overall, we found that our set of instructions had a wide range of difficulty levels (see Supplemental
Figure S11 for the distribution). We confirmed that the items that we designed to be harder (e.g.,
constructing a “computer mouse”) indeed came out ranked as the most difficult, whereas the easiest
ones (e.g., constructing a “ladder”) were ranked as the easiest.

We can validate this by viewing the mean score given to each instruction set by the graders, and
seeing a broad distribution (Supplemental Figure S10).

D.3 VVIQ ANALYSIS

The VVIQ scale range is 16 (minimum) to 80 (maximum). Subjects had a mean VVIQ score of 55.8,
confirming that our sample was normal given recent large sampling efforts (Wright et al., 2024). We
did not find any correlation between VVIQ scores and subjects’ performance (Pearson’s r = −0.17,
p = .0942]). If anything, there was a negative trend, suggesting that imagery capacity as measured
by the VVIQ could not predict performance in a task designed to measure mental imagery. See
Supplemental Figure S12.

Of the 100 subjects we tested, one subject qualified as a true aphantasic (VVIQ score of 16, the
minimum). This subject, however, had the 5th highest score of all human subjects. While this
constitutes a single data point (all other subjects had higher VVIQ scores), it raises the question of
how this subject was able to complete the task. Recent data has shown that aphantasics can complete
imagery tasks surprisingly well (Blomkvist, 2023; Kay et al., 2024; Pounder et al., 2022), even if
the exact way in which they accomplish this or whether they use a single strategy across tasks is still
unclear.

There were three subjects who qualified as low-imagers (or weak aphantasics) scoring between 17
and 32 on the VVIQ (23, 29, 29). Two of the subjects performed around the median score for
humans (53rd and 56th), while the third was the 15th highest scoring individual in our dataset.
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Lastly, we had seven subjects who had very high imagery (or hyperphantasics) scoring between 75
and 80 (the highest) on the VVIQ (one scored 77 the rest 80). These subjects had very mixed per-
formance with three subjects performing above the median (18th, 20th, and 24th), and four subjects
performing well below the median, and in a couple cases getting close to the bottom performance
(77th, 81st, 91st, and 94th).

The high performance exhibited by the aphantasic subjects and the most advanced LLMs, in addition
to the lack of correlation between imagery capacity (measured via VVIQ) and performance in the
task, offers further evidence that mental imagery may operate in a propositional format. At the very
least, this supposedly gold standard for probing pictorial imagining may not be as well suited for the
task as generations of cognitive psychologists have thought. Naturally, much more data and analysis
is needed to cement this conclusion. The current experiments with LLMs, and future ones as well,
may help further our understanding of how aphantasics are able to accomplish these and other tasks.
(For one possible explanation appealing to spatial imagery, see section 4 in the main text).

E EXTENDED PERFORMANCE EVALUATION - LLMS

E.1 REASONING VARIATION

In addition to the selection of models we tested with ‘reasoning effort’ set to ‘high’, we tested the
best performing reasoning models on ‘low’ and ‘medium’ (and GPT-5 on ‘minimal’), as well as two
other models on ‘medium’ (see Supplemental Table S3).

Overall we saw that as reasoning token and time allocations decreased, so did the performance
(o3 ‘high’ vs. ’medium: 7.7% difference [χ2 = 5.401, p = .0201, CI = [0.011, 0.144]];
vs. ‘low’ 10.2% difference [χ2 = 9.513, p = .0020, CI = [0.035, 0.169]]; GPT-5 ‘high’ vs.
‘medium’: 7.5% difference [χ2 = 4.594, p = 0.0320, CI = [0.005, 0.145]]; vs. ‘low’: 16.4%
difference [χ2 = 22.084, p < .00001, CI = [0.094, 0.235]]; vs. ‘minimal’: 26.2% difference
[χ2 = 55.522, p < .00001, CI = [0.193, 0.332]]; additionally see Supplemental Figure S4 and S5).
One interesting data point, however, was the lack of any significant difference between ‘high’ and
‘medium’ in o3 with GPT-image-1 (‘high’ vs. ‘medium’: 0.5% difference [χ2 = 0.008, p = .9281,
CI = [−0.06, 0.07]). This may hint at the possibility that the image paradigm has, despite mod-
els overall lower performance, the potential to provide some support solving this task. The issues
with compositional generation inherent to image generation models, however, may hinder it overall
(Huang et al., 2023). We provide statistics between humans and our reasoning model variations in
Appendix E.5.2.

E.2 REASONING UNDER UNCERTAINTY

One remarkable result we found was the lack of capability for LLMs to answer with uncertainty
(and yet, it was unsurprising given well-known limitations of LLMs). We noted 54 occurrences of
humans responding some form of “I don’t know” to an instruction set, and 0 occurrences in the
LLM responses. It is highly possible that LLMs provide responses even when great uncertainty
exists (especially in our hardest instruction sets). This is an area worth exploring in further analyses
on how LLMs succeed or fail at the task (Brahman et al., 2024; Kadavath et al., 2022; Malinin &
Gales, 2021).

E.3 MODEL TEMPERATURE

With the exception of Gemini 2.5 Pro (where we set the temperature to 0.1), all reasoning models
were restricted to high temperatures by their respective APIs (1.0 for Claude and OpenAI models).
We consider that the performance of Gemini 2.5 Pro (well below the other frontier reasoning models)
may be due to the low temperature. Temperature has been shown to meaningfully affect reasoning
outputs (Wang et al., 2024a). Though, on many tasks it does not necessarily improve the results
(Renze & Guven, 2024). In our case, it may allow the model to explore more creative paths to the
correct answer and succeed more often (Turing, 1950).
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E.4 OPEN WEIGHT MODELS

In our initial testing of the project paradigm, we tested 5 open-weight models (Gemma2 2b, Gemma2
9b, Llama 3.2, Phi4, and Mistral 7b) on the 12 original items. Additionally we tried augmenting the
models with Stable Diffusion 1.5 in an earlier version of the image generation paradigm. With a
single exception to one task with Gemma2 2b, all instruction sets failed, in all cases, in all models.

E.5 EXTENDED STATISTICAL ANALYSIS

E.5.1 STANDARD PARADIGM

Humans vs. . . . :

• o3: −9.4% difference, χ2 = 28.631, p < .00001, CI = [−0.128,−0.06]

• o3 with GPT-image-1: -0.6% difference, χ2 = 0.143, p = .7057, CI = [−0.037, 0.024]

• o3-Pro: −11.9% difference, χ2 = 45.76, p < .00001, CI = [−0.153,−0.086]

• GPT-4.1: 12.2% difference, χ2 = 32.987, p < .00001, CI = [0.08, 0.164]

• GPT-4.1 with GPT-image-1: 16.4% difference, χ2 = 59.482, p < .00001, CI =
[0.123, 0.206]

• ChatGPT-4o: 12.8% difference, χ2 = 35.86, p < .00001, CI = [0.086, 0.17]

• o4-mini: 1.7% difference, χ2 = 0.577, p = .4477, CI = [−0.025, 0.059]

• Gemini 2.5 Pro: 12.2% difference, χ2 = 32.987, p < .00001, CI = [0.08, 0.164]

• Gemini 2.0 Flash: 16.7% difference, χ2 = 61.741, p < .00001, CI = [0.126, 0.209]

• Gemini 2.0 Flash with Images: 21.6% difference, χ2 = 53.296, p < .00001, CI =
[0.16, 0.272]

• Claude Sonnet 4: 13% difference, χ2 = 37.392, p < .00001, CI = [0.088, 0.172]

• Claude Opus 4.1: 1.8% difference, χ2 = 0.299, p = .5845, CI = [−0.042, 0.077]

• GPT-5: −12.3% difference, χ2 = 33.302, p < .00001, CI = [−0.163,−0.082]

E.5.2 REASONING VARIATIONS

Humans vs. . . . :

• o3 ‘high’: −9.4% difference, χ2 = 28.631, p < .00001, CI = [−0.128,−0.06]

• o3 ‘medium’: −1.7% difference, χ2 = 0.273, p = .6014, CI = [−0.076, 0.042]

• o3 ‘low’: 0.8% difference, χ2 = 0.273, p = .8349, CI = [−0.051, 0.067]

• o3 with GPT-image-1 ‘high’: o3 with GPT-image-1: -0.6% difference, χ2 = 0.143, p =
.7057, CI = [−0.037, 0.024]

• o3 with GPT-image-1 ‘medium’: -0.1% difference, χ2 = 0, p = 1, CI = [−0.06, 0.057]

• o3-Pro ‘high’: −11.9% difference, χ2 = 45.76, p < .00001, CI = [−0.153,−0.086]

• o4-mini ‘high’: 1.7% difference, χ2 = 0.577, p = .4477, CI = [−0.025, 0.059]

• o4-mini ‘medium’: 5.8% difference, χ2 = 7.209, p = .0073, CI = [0.015, 0.1]

• GPT-5 ‘high’: -12.3% difference, χ2 = 33.302, p < .00001, CI = [−0.163,−0.082]

• GPT-5 ‘medium’: −4.8% difference, χ2 = 2.441, p = .1182, CI = [−0.106, 0.011]

• GPT-5 ‘low’: 4.2% difference, χ2 = 1.854, p = .1733, CI = [−0.018, 0.101]

• GPT-5 ‘minimal’: 14% difference, χ2 = 22.151, p < .00001, CI = [0.081, 0.198]

20



McCarty & Morales Artificial Phantasia

F FUTURE WORK

This work has several future steps given its impact both within cognitive science as well as artificial
intelligence.

First, in humans, aphantasics lack voluntary visual mental imagery, but report little-to-no issues
in other areas of everyday life; often times living without knowing of the condition at all (Larner
et al., 2024). We suggest a follow-up study on the strategies and techniques used by aphantasics
in comparison to those used by LLMs. The lack of visual imagery parallels the inability for visual
imagery inherent to LLMs, and by studying both groups, it may be possible to learn more about the
need for pictorial imagery or the lack there-of to perform compositional tasks like the one we tested.

Second, as multimodal auditory, vision, and language models continue to advance, the capabilities of
these models surely will as well. We propose continuing to evaluate the performance of the leading
frontier models on our paradigm. Currently, given the bespoke nature of our stimuli, our task is
not contained within the training data of any model as of now and, as such, is not subject to data
contamination issues. However, as time passes this risk continues to increase. Creating more items
in this kind of task requires certain ingenuity but they are sufficiently straightforward that new ones
can be devised ad hoc. Further model evaluation should include tasks hidden from public datasets
to truly measure advancement in propositional reasoning.

Third, humans provided a great limitation to the creation of trials that would serve for benchmarking.
The general rule is 7 plus or minus 2 (or even less) objects can be worked with at once in human
working memory (Miller, 1956; Farrington, 2011). LLMs are only limited by their contexts, which
can hold vastly more information than any human. Without this limitation, it is unknown the extent
of LLMs propositional reasoning capacity. As such, trials with many more than 3-5 steps and many
more than 4 objects may be created, and, furthermore, may be necessary for future evaluation given
GPT-5 and the o3 family’s performance on the existing items. Conversely, we do not know to what
extent our task necessitates working memory. It may be entirely possible for humans to work through
an arbitrary number of iterative instructions, with an arbitrary number of components (overall, not
per-step), given that each step creates a new imaginary scene (and therefore humans may only have
to keep the previously imagined scene, and any new information, in mind).

Finally, in the future, as models progressively get stronger, open weight models that perform well
enough on this task to compete with the GPT-5 and o3 family should exist. Once this can occur,
we propose mechanistic approaches that look inside the models and directly examine the formats of
representation. Can we find direct evidence of propositional reasoning (or learned iconic represen-
tations or a distinct spatial imagery capacity) by examining the weights of the models McCoy et al.
(2019); Piantadosi et al. (2024)?

G TECHNICAL SETUP

All model prompting was done through the respective APIs of the models’ parent company in
Python. Models were run at least once in multiple-context with most models being run at least
once in both single-context and multiple-context. After determining that there was no statistical
difference between the two paradigms, any subsequent runs of models were run in multiple-context
(due to the decreased cost of inference because of less input token usage).

Our exact runs of model paradigms are as follows:

• Claude Opus 4.1, multiple-context: 1

• Claude Sonnet 4, multiple-context: 1

• Claude Sonnet 4, single-context: 1

• Gemini 2.0 Flash, multiple-context: 1

• Gemini 2.0 Flash, single-context: 1

• Gemini 2.0 Flash images, multiple-context: 1

• Gemini 2.5 Pro, multiple-context: 1

• Gemini 2.5 Pro, single-context: 1
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• ChatGPT-4o, multiple-context: 1
• ChatGPT-4o, single-context: 1
• GPT-4.1, multiple-context: 1
• GPT-4.1, single-context: 1
• GPT-4.1 with GPT-image-1, multiple-context: 1
• GPT-4.1 with GPT-image-1, single-context: 1
• GPT-5, high reasoning, multiple-context: 2
• GPT-5, medium reasoning, multiple-context: 1
• GPT-5, low reasoning, multiple-context: 1
• GPT-5, minimal reasoning, multiple-context: 1
• o3, high reasoning, multiple-context: 2
• o3, high reasoning, single-context: 1
• o3, medium reasoning, multiple-context: 1
• o3, low reasoning, multiple-context: 1
• o3-Pro, high reasoning, multiple-context: 2
• o3-Pro, high reasoning, single-context: 1
• o3 with GPT-image-1, high reasoning, multiple-context: 4
• o3 with GPT-image-1, medium reasoning, multiple-context: 1
• o4-mini, high reasoning, multiple-context: 1
• o4-mini, high reasoning, single-context: 1
• o4-mini, medium reasoning, multiple-context: 1
• o4-mini, medium reasoning, single-context: 1

The strongest OpenAI reasoning models were run a single additional time with variations on the
‘reasoning effort’ parameter as described in Appendix E.1. Our reported data in all other sections is
based on the ‘reasoning effort’ parameter being set to ‘high’.

For all models which allowed modification in their ‘temperature’ parameter, we set it to 0.1 (rea-
soning models from OpenAI and Anthropic do not allow modification to temperature). All other
hyperparameters were left at their default value.

For OpenAI, we used the openai package, version 1.76.2; for Gemini, the google-genai package
version 1.14.0; for Claude, the anthropic package version 0.52.2. We used the Miniconda en-
vironment manager to create a Python 3.12.9 environment, and the complete frozen package list
(‘python env.yml’) is available in our repository (see Appendix B).

Our prompt processing pipeline was run on a 2019 Razer Blade Stealth running Arch Linux with 16
GB of RAM, an 8 core Intel CPU (i7-8565U), and no dedicated GPU.

All data collected from models totaled around $1000 US in cost. The exact versions of models is
listed in Table S2.

Data pre-processing was performed in a Jupyter Notebook file. We provide .md and .html versions
of the output in addition to the raw file for convenience.

Statistical analyses were performed using R 4.3.3 in PyCharm with the R plugin installed. Mini-
conda was also used to create a replicable environment and the frozen package list (‘r env.yml’) is
available in our repository. Our analyses were performed within an R Markdown script. We provide
.html and .pdf exports for simplified viewing.
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H SUPPLEMENTAL FIGURES

Step 1 Step 2

Generate an image 
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each other.
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image with the left 

figure mirrored so that 
it points left.
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Step 4

From there, modify the 
image with a lowercase 
letter “v” affixed to the 
middle of the top of the 

figure.

Result

Canonical form: 
Butterfly

Step 3
From there, modify the 

image with the two 
figures aligned such 
that the two vertical 
lines are overlaid.

“Butterfly”

Figure S1: An example image generation output from GPT-image-1 in combination with o3. No seed image
was given to the model, but subsequent steps retained the previous image and asked for its modification.

Figure S2: 95% confidence intervals showing the differences between Single-Context and Multiple-Context.
Single-Context has a slight, non-significant edge in most cases. All context variant comparisons were non-
significant after correcting for multiple-comparisons.
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Figure S3: Separated 95% proportions of maximum possible score between Finke et al. Items (left) and 48
Novel Items (right).

Figure S4: Hyperparameter comparison of results (95% confidence intervals of proportions of maximum possi-
ble score) after modifying ‘reasoning effort’ parameter in OpenAI Large Language Reasoning Models. Human
baseline is included. Generally, as reasoning effort (token generation amount) increases, so does performance.
Results are separated by Finke et al. Items (left) and 48 Novel Items (right).
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Figure S5: Hyperparameter comparison of collapsed results (95% confidence intervals of proportions of max-
imum possible score) after modifying ‘reasoning effort’.

Figure S6: The distribution of VVIQ scores for our 100 human subjects. 1 subject qualified as an aphantasic
under the strictest condition (VVIQ = 16). The characteristic left skew of the distribution is clear.
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Figure S7: The distribution of overall graded scores for the 100 human subjects. As the subset of questions
given to each subject was random, the overall difficulty of each set was not guaranteed and therefore some noise
in the score distribution is expected.

Figure S8: The distribution of scores given to unique answers by the 376 crowd-sourced subjects. ≈5 per each
of the 1911 unique responses. Experts gave more high ratings than the random subjects.
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Figure S9: The distribution of scores given to unique answers by the 2 expert subjects. 2 to each of the 1911
unique responses.

Figure S10: The mean crowd-sourced score for each answer given in each instruction set. Particularly difficult
trials had a large variety of answers, many with lower scores.
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Figure S11: Distribution of calculated difficulty scores per instruction set. Our instruction sets showed strong
variance of difficulty.

Figure S12: Correlation between VVIQ score sum, ‘overall score’, ‘normal score’, and ‘expert score’ (see
Appendix D.1 for terminology explanation).
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I SUPPLEMENTAL TABLES

Table S1: Model selection and features. For OpenAI reasoning models, ‘reasoning effort’ was set to ‘high’
(as shown) and, for the models indicated, GPT-image-1 was integrated. For Gemini models, default parameters
regarding reasoning were retained and native image generation tools were used. For Claude models a reasoning
token budget was manually given (well above what was ever allocated). This table only shows the primarily
graded models, not the reasoning variations in our reasoning model effort analysis.

Model Reasoning Image Generation
GPT-5 High No
o3-Pro High No
o3 High Yes
o4-mini High No
ChatGPT-4o No No
GPT-4.1 No Yes
Gemini 2.5 Pro Dynamic No
Gemini 2.0 Flash No Yes
Claude Sonnet 4 4000t No
Claude Opus 4.1 9000t No

Table S2: Model Versions. Model versions used in our analysis. When possible exact dated versions are given,
if no such version is available the date of usage was also provided.

Model Version
GPT-5 gpt-5-2025-08-07
o3 o3-2025-04-16
o3-Pro o3-pro-2025-06-10
o4-mini o4-mini-2025-04-16
ChatGPT-4o chatgpt-4o-latest (July 2025)
GPT-4.1 gpt-4 1-2025-04-14
GPT-image-1 gpt-image-1-2025-04-23
Gemini 2.0 Flash gemini-2.0-flash (February 2025)
2.0 Flash Image Preview gemini-2.0-flash-preview-image-generation (May 2025)
Gemini 2.5 Pro gemini-2.5-pro-preview-05-06
Claude Sonnet 4 claude-sonnet-4-20250514
Claude Opus 4.1 claude-opus-4-1-20250805

Table S3: Reasoning Variations. Reasoning level variations used for reasoning analysis.

Model Reasoning Levels Used
GPT-5 Minimal, Low, Medium, High
o3-Pro High
o3 Low, Medium, High
o3 with GPT-image-1 Medium, High
o4-mini Medium, High

29



McCarty & Morales Artificial Phantasia

Table S4: Results Breakdown. Models in bold indicate highest performer in the group. The human baseline is
in green. Models in purple surpass the human baseline significantly [** p < .01, *** p < .001]. Models in
blue are not significantly [ns] different from the human baseline (i.e., at human level).

Agent Score Max Possible Score Proportion
Finke et al. Items
Humans 961.096 1525 0.6302
o3ns 109.900 180 0.6106
o3 + GPT-image-1 134.483 240 0.5603
o3-Pro∗∗∗ 138.908 180 0.7717
GPT-4.1 56.407 120 0.4701
GPT-4.1 + GPT-image-1 41.000 120 0.3417
o4-mini 63.008 120 0.5251
Gemini 2.5 Pro 61.125 120 0.5094
Gemini 2.0 Flash 41.100 120 0.3425
Gemini 2.0 Flash + Images 20.538 60 0.3423
Claude Sonnet 4 54.652 120 0.4554
Claude Opus 4.1ns 44.467 60 0.7411
GPT-5∗∗ 91.950 120 0.7663

Table S5: Novel 48-Item Expansion Results Breakdown. Models in bold indicate highest performer in the
group. The human baseline is in green. Models in purple surpass the human baseline significantly [** p < .01,
*** p < .001]. Models in blue are not significantly [ns] different from the human baseline (i.e., at human level).

Agent Score Max Possible Score Proportion
48 Novel Items
Humans 3137.120 5965 0.5259
o3∗∗∗ 467.490 720 0.6493
o3 + GPT-image-1ns 529.699 960 0.5518
o3-Pro∗∗∗ 460.713 720 0.6399
GPT-4.1 198.455 480 0.4134
GPT-4.1 + GPT-image-1 188.827 480 0.3934
o4-minins 255.123 480 0.5315
Gemini 2.5 Pro 215.949 480 0.4499
Gemini 2.0 Flash 186.882 480 0.3893
Gemini 2.0 Flash + Images 78.807 240 0.3284
Claude Sonnet 4 195.488 480 0.4073
Claude Opus 4.1ns 114.352 240 0.4765
GPT-5∗∗∗ 309.873 480 0.6456

30


	Introduction
	Pictorial vs. Propositional Mental Imagery
	Solving Mental Imagery Tasks without Mental Imagery?
	Motivation for LLM Mental Imagery Tasks
	Related Work

	Experimental Design
	Image-Aided Instructions
	Model Selection
	Human Baseline
	Performance Evaluation

	Results
	Human Performance
	o3 and GPT-5 vs. Everything Else
	Image-aided Reasoning
	Multiple- vs. Single-Context

	Discussion
	Conclusions
	Limitations
	Ethics Statement
	Reproducibility Statement
	Usage of Large Language Models
	Access to Code and Data
	Extended Related Work
	Extended Performance Evaluation - Humans
	Grade Weighting
	Difficulty Analysis
	VVIQ Analysis

	Extended Performance Evaluation - LLMs
	Reasoning Variation
	Reasoning Under Uncertainty
	Model Temperature
	Open Weight Models
	Extended Statistical Analysis
	Standard Paradigm
	Reasoning Variations


	Future Work
	Technical Setup
	Supplemental Figures
	Supplemental Tables

