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‭Abstract‬
‭Psychophysics seeks to quantitatively characterize relationships between objective properties of‬
‭the world and subjective properties of perception. However, traditional approaches investigate‬
‭psychophysical dependencies of perception on stimulus properties on a case by case basis‬
‭rather than seeking to identify quantitative relationships‬‭among‬‭these psychological processes‬
‭themselves. This latter goal is particularly important when the processes in question likely‬
‭depend on each other in some way, such as is the case for subjective experience and task‬
‭performance: typically, stronger physical stimuli lead to better performance‬‭and‬‭stronger‬
‭subjective experiences of clarity, vividness, or confidence. But is the relationship between‬
‭performance and subjective experience fixed, or can it vary, e.g. by task or attentional‬
‭demands? Such questions are key for better understanding psychological processes in general,‬
‭and subjective experience in particular. Here, we develop and showcase a new psychophysical‬
‭method designed to answer such questions:‬‭relative‬‭psychometric function‬‭(RPF) analysis,‬
‭which characterizes the nonlinear psychometric relationships between psychological processes‬
‭and how these relationships change under different circumstances (e.g. experimental‬
‭manipulations). We demonstrate the advantages of RPF analysis using a sample dataset in‬
‭which human subjects discriminated random dot kinematogram stimuli which varied in dot‬
‭motion coherence and overall dot density (dots per visual degree), and rated confidence. RPF‬
‭analysis revealed systematic changes in the relationship between performance and two‬
‭subjective measures (confidence and metacognitive sensitivity) due to dot density and task‬
‭design choices. While these empirical results are intriguing in their own right, they also show‬
‭how RPF analysis can reveal changes in quantitative relationships between any two‬
‭psychological measures: performance, vividness, clarity, reaction time, confidence, and more.‬
‭To encourage the scientific community to use RPF analysis on their data, we also present our‬
‭open-source RPF toolbox.‬

‭Keywords:‬‭psychophysics; psychometric functions; relative‬‭psychometric function; subjective‬
‭experience; quantitative psychology‬
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‭Introduction‬
‭Arguably, the field of quantitative psychology began in the 1860s with Fechner’s‬‭Elemente der‬
‭Psychophysik – Elements of Psychophysics‬‭(Fechner, 1860; Fechner et al., 1966)(Fechner,‬
‭1860; Fechner et al., 1966)‬‭. Fechner’s work set the foundation for what is now over 150 years of‬
‭concerted effort to map objective properties of the world to properties of the mind and brain.‬
‭Weber, Stevens, and others followed, seeking to establish the functional forms of these‬
‭relationships: that an observer’s “just noticeable difference” in discriminating two stimuli‬
‭depends on their absolute magnitude (Weber’s law), and that the perceived magnitude of a‬
‭stimulus (brightness, loudness, painfulness) exhibits an exponential relationship to the objective‬
‭stimulus magnitude (Stevens’ power law). These “introductory psychology course” concepts are‬
‭foundational pillars in the modern study of psychology.‬

‭The success of this framework underscores our deep motivation to build models of our minds,‬
‭but standard psychophysical approaches represent one-to-one mappings between the physical‬
‭and mental. Ultimately, we wish to understand not only how psychological processes relate to‬
‭properties of the world, but also how psychological processes relate to‬‭each other.‬‭For example,‬
‭increasing stimulus strength typically leads to faster, more accurate decisions, and increased‬
‭sense of confidence in those decisions. Likewise, the subjective sense of clarity may also‬
‭systematically vary with stimulus properties. But what is the relationship among all these‬
‭psychological variables, and is it fixed across different attentional states, tasks, or individuals?‬
‭While the relationship linking stimulus magnitude, discriminability, and absolute magnitude‬
‭estimation has recently been described‬‭(Zhou et al., 2024)(Zhou et al., 2024)‬‭, what about the‬
‭relationships linking all these other psychological properties to each other?‬

‭Characterizing quantitative relationships between psychological variables is also especially‬
‭important when those relationships themselves may change depending on properties of the‬
‭world or other psychological processes. Perhaps nowhere is this more evident than in‬
‭psychophysical studies of subjective experience, where there are clear, empirically observed‬
‭relationships among stimulus intensity, task performance, and second-order judgments such as‬
‭confidence (judgment of whether a given discrimination decision is likely to be correct) or‬
‭subjective visibility or vividness (e.g., judgment of the clarity with which you saw a stimulus,‬
‭regardless of its objective properties). In most instances, these subjective aspects covary with‬
‭objective performance‬‭(Baranski and Petrusic, 1994)(Baranski and Petrusic, 1994)‬‭: a higher‬
‭probability of correctly identifying a stimulus is typically accompanied by higher confidence,‬
‭higher vividness ratings, and a higher probability of reporting having seen the stimulus at all.‬
‭This means that any neural or psychophysical measures of subjective experience are easily‬
‭confounded by processes driving objective performance.‬

‭A standard approach to disentangling the neural correlates of subjective experience from those‬
‭underlying objective performance has been to control for these ‘performance confounds’‬
‭through either experimental or analytic approaches‬‭(Lau, 2008; Lau and Passingham, 2006;‬
‭Morales et al., 2022; Peters et al., 2017b)(Lau, 2008; Lau and Passingham, 2006; Morales et‬
‭al., 2022; Peters et al., 2017b)‬‭. One popular approach is to create multiple experimental‬
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‭conditions in which performance (e.g., percent correct responses or the signal detection‬
‭theoretic metric‬‭d’‬‭) is held constant (e.g., through subject-specific staircasing) but subjective‬
‭reports (confidence, vividness, visibility, clarity) vary. However, this approach is not ideal for‬
‭several reasons. First, if performance is held constant across conditions, discovering a‬
‭difference in subjective reports despite no difference in objective performance might rely on a‬
‭statistical null effect, i.e. that the null hypothesis of equivalent performance could not be rejected‬
‭given the data available. This situation might arise simply from situations in which a chosen‬
‭manipulation had a smaller or noisier effect on performance than it did on subjective reports,‬
‭rather than no effect at all. Second, the effect of an experimental manipulation on a subjective‬
‭measure at a given matched performance level may strongly depend on the absolute level of‬
‭performance (see also‬‭(Morales et al., 2022)(Morales et al., 2022)‬‭for further discussion). Such‬
‭condition-driven differences in confidence at matched performance have been observed in‬
‭many different paradigms‬‭(Koizumi et al., 2015; Lau and Passingham, 2006; Maniscalco et al.,‬
‭2016; Odegaard et al., 2018a, 2018b; Rahnev et al., 2011; Rouault et al., 2018; Samaha et al.,‬
‭2016; Stolyarova et al., 2019)(Koizumi et al., 2015; Lau and Passingham, 2006; Maniscalco et‬
‭al., 2016; Odegaard et al., 2018a, 2018b; Rahnev et al., 2011; Rouault et al., 2018; Samaha et‬
‭al., 2016; Stolyarova et al., 2019)‬‭, but the effect‬‭size (and sometimes even direction!) can vary‬
‭across stimulus or task manipulations as well as the (matched) performance level itself.‬

‭For these reasons, performance matching is not enough. Neither is the qualitative‬
‭characterization that performance and subjective reports both increase with stimulus strength.‬
‭Instead, we wish to understand the precise quantitative relationship among these variables,‬
‭including assessing the stability or generalizability of those relationships across experimental‬
‭manipulations, changing brain states, or individuals.‬

‭To date, however, no framework exists for precisely characterizing such nonlinear relationships‬
‭among psychological variables and how they may change in interesting ways. An impediment to‬
‭this enterprise has been that these relationships are, by definition, nonlinear linkages between‬
‭variables measured with error. Fitting any function linking two such variables constitutes a‬
‭nonlinear “errors in variables” problem, for which there is no known closed form solution (see‬
‭e.g.,‬‭(Hausman et al., 1995; Huang et al., 2023; Li, 2002; Wolter and Fuller, 1982)(Hausman et‬
‭al., 1995; Huang et al., 2023; Li, 2002; Wolter and Fuller, 1982)‬‭. Moreover, even if this problem‬
‭were solved, the functional form linking two or more psychological variables is unlikely to be‬
‭known a priori, requiring us to fall back on nonparametric methods (e.g. rank-based‬
‭correlations) designed merely to reveal the‬‭presence‬‭and‬‭strength‬‭of a potential relationship,‬‭not‬
‭its shape.‬

‭In short, we need a framework to (a) quantitatively characterize the nonlinear relationships‬
‭among psychological variables measured with error; and (b) quantitatively characterize how‬
‭much – and in what way – those relationships change with experimental manipulations, neural‬
‭factors, or individual differences.‬

‭Here, we introduce an analytic framework to address these problems in the study of the neural‬
‭and computational machinery underlying multiple psychological variables at once. The‬
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‭approach, which we term‬‭relative psychometric function‬‭(RPF) analysis, aims to systematically‬
‭characterize how some aspects of perception, experience, or stimulus processing behave‬
‭relative to the behavior of other aspects in response to stimulus or task manipulations, individual‬
‭differences, and so on. The framework is sufficiently general to be applied to investigation of the‬
‭relationship between any psychological or neural processes‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭which can be expressed‬
‭as psychometric functions of a common continuous variable such as stimulus intensity. And, for‬
‭the study of perceptual metacognition specifically, the RPF offers a method for quantifying,‬
‭parameterizing, and thus understanding the entire‬‭relative psychometric function‬‭linking various‬
‭objective and subjective aspects of perception – including confidence, visibility, vividness, clarity,‬
‭and any others that might be deemed relevant – across the whole range of performance that‬
‭might be elicited in a given task. This approach thus provides a tool for precisely measuring how‬
‭different subjective experiences might arise from equivalent intervals of objective processing‬
‭capacity, sidestepping earlier challenges described above. The RPF method as applied to‬
‭perceptual metacognition also answers recent calls for a ‘metacognitive psychophysics’‬
‭(Fleming, 2023)(Fleming, 2023)‬‭, and builds upon the “metacognition as a step towards‬
‭explaining phenomenology” (M-STEP) approach introduced by Peters‬‭(2022)(2022)‬‭, which‬
‭called for research to seek canonical metacognitive computations as a strategy for revealing‬
‭how subjective experience in general may be generated.‬

‭In what follows we introduce this relative psychometric function, derive its parameterization,‬
‭explore its behavior, develop and validate interpretable summary statistics, and discuss its‬
‭interpretation using a sample dataset in which performance and confidence were independently‬
‭manipulated across a large range of stimulus strengths.‬

‭We believe this framework will prove a highly flexible and powerful analysis tool in psychology‬
‭and neuroscience for studying relationships between various psychological and neural‬
‭processes. To facilitate this goal, all the methods, data, and analyses presented here are also‬
‭used to introduce the RPF toolbox (‬‭https://github.com/CNClaboratory/RPF‬‭)‬‭– an open-source‬
‭resource for the community to apply RPF analyses to any suitable dataset. Thus, we make‬
‭reference to this toolbox throughout, and include additional details about implementation on the‬
‭case study dataset presented here in the‬‭Supplemental‬‭Material‬‭.‬

‭Methods, Results, & Discussion‬

‭Deriving and interpreting the relative psychometric function (RPF)‬

‭Foundations of RPF analysis‬

‭The general form of the RPF‬
‭We define the‬‭relative psychometric function‬‭, or RPF‬‭for short, as the function describing the‬
‭relationship between any two conventional psychometric functions that are expressed in terms‬
‭of a common independent variable. More formally, suppose we have two psychometric functions‬
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‭where‬‭x‬‭is stimulus strength and‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭are different‬‭measures of performance, such as‬
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‭and write‬‭P‬‭2‬ ‭=‬‭R‬‭(‬‭P‬‭1‬‭) for short. Thus,‬‭R‬‭uses the known‬‭psychometric functions‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭of a‬
‭common independent variable‬‭x‬‭in order to express‬‭P‬‭2‬ ‭as a function of‬‭P‬‭1‬ ‭(‬‭Figure 1‬‭).‬

‭R‬‭can be seen as the result of a coordinate transformation‬‭of‬‭F‬‭2‬ ‭in which the‬‭x‬‭input is replaced‬
‭with a‬‭P‬‭1‬ ‭input derived from the mapping‬‭x‬‭=‬‭F‬‭1‬

‭-1‬‭(‬‭P‬‭1‬‭).‬‭Thus, the plot of‬‭P‬‭2‬ ‭=‬‭R‬‭(‬‭P‬‭1‬‭) resembles a‬
‭warped plot of‬‭P‬‭2‬ ‭=‬‭F‬‭2‬‭(‬‭x‬‭) in which the‬‭y‬‭-axis values‬‭are identical but their distribution along the‬
‭x-‬‭axis is warped according to the (likely nonlinear)‬‭transformation specified by‬‭P‬‭1‬ ‭=‬‭F‬‭1‬‭(‬‭x‬‭) (cf. the‬
‭three panels of‬‭Figure 1‬‭, and‬‭Figures S1‬‭and‬‭S2‬‭in‬‭the‬‭Supplemental Material‬‭). Over‬‭x‬
‭intervals where‬‭F‬‭1‬‭(‬‭x‬‭) is shallow,‬‭x‬‭values map onto‬‭a small range of‬‭P‬‭1‬ ‭values. This effectively‬
‭makes the corresponding‬‭x‬‭intervals of the‬‭F‬‭2‬‭(‬‭x‬‭) plot‬‭contract in their transformation to small‬‭P‬‭1‬

‭intervals of the‬‭R‬‭(‬‭P‬‭1‬‭) plot. Conversely, over‬‭x‬‭intervals‬‭where‬‭F‬‭1‬‭(‬‭x‬‭) is steep, similar‬
‭considerations make the corresponding‬‭x‬‭intervals‬‭of the‬‭F‬‭2‬‭(‬‭x‬‭) plot expand in their‬
‭transformation to large‬‭P‬‭1‬ ‭intervals of the‬‭R‬‭(‬‭P‬‭1‬‭)‬‭plot.‬

‭Importantly, deriving‬‭P‬‭2‬ ‭=‬‭R‬‭(‬‭P‬‭1‬‭) via the relationship‬‭of‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭to a common independent‬
‭variable‬‭x‬‭, where‬‭x‬‭is known exactly rather than measured‬‭with error, bypasses difficulties that‬
‭would arise from attempting to fit a function directly to the (‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data. Since both‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭are‬
‭variables measured with error and likely have a nonlinear relationship, attempting to fit‬‭P‬‭2‬ ‭=‬
‭R‬‭(‬‭P‬‭1‬‭) directly requires a nonlinear errors-in-variables‬‭model. However, there is no known‬
‭solution for fitting such models directly, and existing approaches require incorporation of‬
‭additional data and application of complex analysis methods tailored to specific cases (see e.g.‬
‭(Hausman et al., 1995; Huang et al., 2023; Li, 2002; Wolter and Fuller, 1982)(Hausman et al.,‬
‭1995; Huang et al., 2023; Li, 2002; Wolter and Fuller, 1982)‬‭.‬

‭2‬ ‭Here we use‬‭F‬‭rather than the conventional 𝜓 to‬‭denote psychometric functions for consistency with the‬
‭RPF toolbox notation, in which it is more convenient to use‬‭F‬‭.‬

‭1‬ ‭Note that‬‭P‬‭is intended as shorthand for “performance”‬‭and does not necessarily connote a probability.‬
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‭In the case of analyzing the relationships between psychometric functions in experimental‬
‭psychology research, the (‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data we might wish‬‭to relate are themselves already derived‬
‭from systematic manipulation of the common independent variable‬‭x‬‭, and thus the information‬
‭needed to estimate the relationships of‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭to‬‭x‬‭comes “for free” in the collection of the‬
‭(‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data. Thus, the approach described in this‬‭work is a natural choice for conducting RPF‬
‭analysis that easily bypasses thorny analysis issues with readily available data.‬

‭The metaperceptual RPF‬
‭As discussed in the introduction, one particular application of interest is the case where‬‭P‬‭1‬ ‭and‬
‭P‬‭2‬ ‭correspond to objective and subjective measures‬‭of perception, respectively. Here, we‬
‭conceive of objective measures of perception as pertaining to judgments about objective states‬
‭of the world (e.g. detecting stimulus presence or discriminating stimulus features), and‬
‭subjective measures as pertaining to judgments about one’s own perceptual processing (e.g.‬
‭assessing confidence in an objective judgment or reporting on the qualities of one’s perceptual‬
‭experience). This characterization of “objective” and “subjective” categories can be seen as a‬
‭generalization of the classical distinction between type 1 and type 2 perceptual tasks, in which‬
‭the type 1 task is to classify a stimulus event and the type 2 task is to classify one’s type 1‬
‭judgment as correct or incorrect‬‭(Clarke et al., 1959; Galvin et al., 2003; Maniscalco et al.,‬
‭2024)(Clarke et al., 1959; Galvin et al., 2003; Maniscalco et al., 2024)‬‭.‬

‭Taking inspiration from the term “psychophysics,” we call this special class of RPFs‬
‭metaperceptual RPFs‬‭or‬‭metaperceptual functions‬‭. Just‬‭as the roots of the word‬
‭“psychophysical” connote “relationship of perception (psycho-) to stimulus (physical),” so the‬
‭roots of the word “metaperceptual” connote “relationship of judgments‬‭about‬‭perception (meta-)‬
‭to perception (perceptual).” We may also use the term‬‭type 2 psychometric function‬‭to refer to‬
‭more restricted cases where the RPF relates type 2 judgments about type 1 accuracy (typically‬
‭confidence ratings) to type 1 accuracy itself (e.g. as in p(correct)).‬

‭Objective measures of perception include accuracy measures such as p(correct) and the signal‬
‭detection theory (SDT) measure of sensitivity‬‭d’‬‭,‬‭and response bias measures such as‬
‭p(response) and the SDT measure of criterion‬‭c‬‭3‬‭. Subjective measures include ratings of‬
‭confidence and reports of experiential qualities such as visibility, clarity, intensity, etc. Subjective‬
‭measures may also characterize the relationship between subjective and objective judgments,‬
‭e.g. by measuring how well confidence ratings track accuracy as in the SDT measure of‬
‭metacognitive sensitivity meta-‬‭d’‬‭(Fleming, 2017; Maniscalco and Lau, 2014, 2012)(Fleming,‬
‭2017; Maniscalco and Lau, 2014, 2012)‬‭).‬

‭Considerations for fitting the component psychometric functions of the RPF‬
‭Psychometric functions can be fitted to probability measures such as p(correct) and p(high‬
‭confidence) with standard maximum likelihood estimation (MLE) procedures‬‭(Kingdom and‬

‭3‬ ‭Sometimes measures like p(response) and‬‭c‬‭are considered‬‭to be‬‭subjective‬‭measures of response‬
‭bias. Here we consider them to be‬‭objective‬‭measures‬‭of perception insofar as these measures pertain to‬
‭judgments‬‭about‬‭the world, rather than judgments about‬‭one’s own perceptual processing.‬
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‭Prins, 2016)(Kingdom and Prins, 2016)‬‭. However, MLE fitting of psychometric functions to‬
‭non-probabilistic measures requires a different approach. Least square fits maximize likelihood‬
‭when errors in the fit can be assumed to be normally distributed with constant variance‬
‭(Burnham and Anderson, 2002)(Burnham and Anderson, 2002)‬‭, but this assumption may not‬
‭always hold (e.g. as for‬‭d’‬‭; see‬‭(Miller, 1996)(Miller,‬‭1996)‬‭).‬

‭In the‬‭Supplemental Material‬‭we derive approaches‬‭to achieving MLE psychometric function‬
‭fits to several variables of central interest for metaperceptual functions:‬‭d’‬‭, meta-‬‭d’‬‭, and mean‬
‭rating (e.g. for confidence or visibility ratings). These approaches work by relating the variable in‬
‭question to probabilities for single-trial outcomes, and thus only require the standard MLE‬
‭assumption that outcome probabilities are independent across trials. For cases where‬
‭specifying or fitting analytical psychometric functions is problematic, we also develop‬
‭nonparametric RPF analysis methods (see below and‬‭Supplemental Material‬‭for further‬
‭discussion), and demonstrate that MLE and nonparametric approaches are comparable in their‬
‭ability to retrieve certain characteristics of the true RPF (see‬‭Supplemental Material‬‭).‬

‭It is possible to take a radically modular approach to constructing the RPF from its component‬
‭psychometric functions, in the sense that because the‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭fits can be treated‬
‭independently, they can be applied to any variable and approached with any fitting method prior‬
‭to being combined in an RPF. Thus e.g. if‬‭F‬‭1‬ ‭is fitted‬‭via MLE, this does not constrain the‬
‭possibilities for fitting‬‭F‬‭2‬ ‭via MLE or least squares‬‭or nonparametric methods. In all cases, the‬
‭approach described in Eq. 2 is sufficiently general to conduct RPF analysis, with the proviso that‬
‭F‬‭1‬ ‭must be invertible. However, even if‬‭F‬‭1‬ ‭is not‬‭invertible, nonparametric analysis of the RPF‬
‭may still be conducted, as discussed further below.‬

‭All of these approaches to RPF analysis – i.e. modular construction of the RPF via some‬
‭combination of MLE fitting for probabilistic variables and certain non-probabilistic variables, least‬
‭square fitting, and nonparametric analysis – can be readily implemented in the RPF toolbox‬
‭(‬‭https://github.com/CNClaboratory/RPF‬‭).‬

‭Figure 1. The relative psychometric function (RPF).‬‭(Left, middle) Conventional psychometric‬
‭functions characterize the curve relating performance on a given task to stimulus strength. (Right) The‬
‭relative psychometric function‬‭characterizes the curve‬‭relating performance on one task (‬‭P‬‭2‬‭) to‬
‭performance on another (‬‭P‬‭1‬‭), given knowledge of how‬‭both relate to a common stimulus feature‬‭x‬‭. This‬
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‭function thus reveals how different measures of psychological processes relate to each other over a wide‬
‭range of performance levels. In situations where RPFs differ across experimental conditions, analysis of‬
‭the RPF can be used to help tease apart the behavior and underlying mechanisms of‬‭P‬‭1‬ ‭and‬‭P‬‭2‬‭. In the‬
‭special case where‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭correspond to objective‬‭and subjective aspects of perception (see main‬
‭text), the RPF is a‬‭metaperceptual function‬‭which can be used to isolate subjective aspects of perception‬
‭from potentially confounding aspects of objective task performance.‬

‭Probing RPF behavior: a case study using the Weibull RPF‬
‭How should we measure, summarize, and analyze the RPF? Can we summarize its behavior‬
‭neatly with a small number of parameter values, similar to how conventional psychometric‬
‭functions are typically analyzed in terms of location and slope parameters? Since the RPF‬
‭depends on the mathematical forms of the two psychometric functions‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭from which it is‬
‭composed, the answer to these questions requires specifying the equations for those functions.‬
‭Here, as a representative example, we consider the behavior of the RPF when‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭are‬
‭probabilities (e.g. p(correct) and p(high confidence)) fitted by Weibull functions‬‭F‬‭1‬ ‭and‬‭F‬‭2‬

‭(Kingdom and Prins, 2016)(Kingdom and Prins, 2016)‬‭.‬

‭The Weibull function for‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭takes on the form‬

‭𝑃‬
‭𝑛‬

= ‭𝐹‬
‭𝑛‬
(‭𝑥‬) = γ

‭𝑛‬
+ ‭1‬ − λ

‭𝑛‬
− γ

‭𝑛‬( ) ‭1‬ − ‭𝑒‬
−(‭𝑥‬‭/‬α

‭𝑛‬
)β

‭𝑛‬⎡
⎢
⎣

⎤
⎥
⎦

‭(3)‬

‭In this equation,‬
‭-‬ ‭denotes the psychometric function to which all terms pertain, with‬‭n‬‭= 1 and 2‬‭𝑛‬

‭corresponding to‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭respectively‬
‭-‬ ‭is performance (here, outcome probability)‬‭𝑃‬

‭𝑛‬

‭-‬ ‭is stimulus strength‬‭𝑥‬
‭-‬ ‭is the chance level of responding for‬γ

‭𝑛‬
‭𝑃‬

‭𝑛‬

‭-‬ ‭is the lapse rate, such that asymptotic performance for‬ ‭is‬λ
‭𝑛‬

‭𝑃‬
‭𝑛‬

‭1‬ − λ
‭𝑛‬

‭-‬ ‭is the location parameter for‬α
‭𝑛‬

‭𝐹‬
‭𝑛‬
(‭𝑥‬)

‭-‬ ‭is the slope parameter for‬β
‭𝑛‬

‭𝐹‬
‭𝑛‬
(‭𝑥‬)

‭Solving Eq. 3 for‬ ‭in the context of‬‭F‬‭1‬ ‭gives‬‭𝑥‬

‭𝑥‬ = ‭𝐹‬
‭1‬
−‭1‬ ‭𝑃‬

‭1‬( ) = α
‭1‬

‭𝗅𝗇‬
‭1‬−λ

‭1‬
−γ

‭1‬

‭1‬−λ
‭1‬
−‭𝑃‬

‭1‬
( )( )

‭1‬
β

‭1‬ ‭(4)‬
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‭Substituting Eq. 4 into the general equation for‬‭R‬‭in Eq. 2 gives‬

‭𝑃‬
‭2‬

= ‭𝑅‬
‭𝑊‬

‭𝑃‬
‭1‬( ) = γ

‭2‬
+ ‭1‬ − λ

‭2‬
− γ

‭2‬( ) ‭1‬ − ‭𝑒‬
−

α
‭2‬

α
‭1‬

( )−β
‭2‬

‭𝗅𝗇‬
‭1‬−λ

‭1‬
−γ

‭1‬

‭1‬−λ
‭1‬
−‭𝑃‬

‭1‬
( )( )

β‭2‬
β‭1‬⎛

⎝

⎞

⎠

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

‭(5)‬

‭We name Eq. 5 the‬‭Weibull RPF‬‭(abbreviated‬ ‭) as this is the mathematical form of the RPF‬‭𝑅‬
‭𝑊‬

‭in the case where both‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭are Weibulls. We can decompose the Weibull RPF into the‬
‭following components:‬

‭-‬ ‭The‬‭F‬‭2‬ ‭guess rate‬ ‭and lapse rate‬ ‭, which determine the minimum, chance level of‬γ
‭2‬

λ
‭2‬

‭performance and maximum, asymptotic level of performance for the‬ ‭just as they do‬‭𝑅‬
‭𝑊‬

‭for‬‭F‬‭2‬‭.‬

‭-‬ ‭The‬‭performance ratio‬ ‭, which characterizes performance‬‭P‬‭1‬ ‭relative to its‬
‭1‬−λ

‭1‬
−γ

‭1‬

‭1‬−λ
‭1‬
−‭𝑃‬

‭1‬

‭possible range of values in‬ ‭. When‬‭P‬‭1‬ ‭is at the chance value of‬ ‭, the‬γ
‭1‬
, ‭1‬ − λ

‭1‬[ ] γ
‭1‬

‭performance ratio = 1 and‬ ‭is at the chance level of performance for‬‭P‬‭2‬‭, i.e.‬ ‭. As‬‭P‬‭1‬‭𝑅‬
‭𝑊‬

γ
‭2‬

‭approaches the asymptotic value of‬ ‭, the performance ratio approaches infinity‬‭1‬ − λ
‭1‬

‭and‬ ‭approaches the asymptotic level of performance for‬‭P‬‭2‬‭, i.e.‬ ‭.‬‭𝑅‬
‭𝑊‬

‭1‬ − λ
‭2‬

‭-‬ ‭The‬‭relative location‬ ‭.‬α
‭𝑅‬

=
α

‭2‬

α
‭1‬

‭-‬ ‭The‬‭relative slope‬ ‭.‬β
‭𝑅‬

=
β

‭2‬

β
‭1‬

‭-‬ ‭The‬‭F‬‭2‬‭slope‬ ‭.‬β
‭2‬

‭We explore how‬ ‭depends on‬ ‭,‬ ‭, and‬ ‭in‬‭Figure 2‬‭. Without loss of generality, we set the‬‭𝑅‬
‭𝑊‬

α
‭𝑅‬

β
‭𝑅‬

β
‭2‬

‭scaling parameters‬ ‭,‬ ‭, and‬ ‭.‬γ
‭1‬

= ‭0‬. ‭5‬ γ
‭2‬

= ‭0‬ λ
‭1‬

= λ
‭2‬

= ‭0‬
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‭Figure 2.‬‭Behavior of the Weibull RPF (‬ ‭) as a function of its three main parameters. Each plot shows‬‭𝑅‬
‭𝑊‬

‭how performance on one task (‬‭P‬‭2‬‭) depends on performance‬‭on another task (‬‭P‬‭1‬‭) according to the Weibull‬

‭RPF specified by parameters for relative location‬ ‭(separate lines within each plot), relative slope‬α
‭𝑅‬

=
α

‭2‬

α
‭1‬

‭(columns), and‬‭F‬‭2‬ ‭slope‬ ‭(rows), as derived from the parameters of the component Weibull‬β
‭𝑅‬

=
β

‭2‬

β
‭1‬

β
‭2‬

‭functions‬‭F‬‭1‬ ‭and‬‭F‬‭2‬‭.‬

‭Overall, the behavior of the Weibull RPF is considerably more complicated than the standard‬
‭Weibull. First, we can observe that‬ ‭does not have a direct analogue to the Weibull’s slope‬‭𝑅‬

‭𝑊‬

‭parameter‬ ‭, but rather has a variable shape and degree of curvature depending on the relative‬β
‭slope‬ ‭and relative location‬ ‭. When‬ ‭,‬ ‭is sigmoidal; when‬ ‭,‬ ‭is inverse‬β

‭𝑅‬
α

‭𝑅‬
β

‭𝑅‬
> ‭1‬ ‭𝑅‬

‭𝑊‬
β

‭𝑅‬
< ‭1‬ ‭𝑅‬

‭𝑊‬

‭sigmoidal; and when‬ ‭,‬ ‭is concave down, linear, or concave up depending on‬ ‭. The‬β
‭𝑅‬

= ‭1‬ ‭𝑅‬
‭𝑊‬

α
‭𝑅‬

‭complexities of how‬ ‭’s shape changes depending on combinations of parameter values‬‭𝑅‬
‭𝑊‬

‭obscures a straightforward and universally applicable interpretation of the function in terms of a‬
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‭slope parameter, and so it is not clear that characterizing‬ ‭in terms of a slope parameter is‬‭𝑅‬
‭𝑊‬

‭the best way to insightfully summarize its behavior.‬

‭Similarly,‬ ‭does not have a simple analogue to the Weibull’s location parameter‬ ‭. In the‬‭𝑅‬
‭𝑊‬

α

‭Weibull (Eq. 3),‬ ‭acts as a location parameter in the sense that the function takes on 63.2% of‬α
‭its maximal value above chance (i.e. 63.2% of the way between‬ ‭and‬ ‭) when‬ ‭,‬γ ‭1‬ − λ ‭𝑥‬ = α

‭since substituting this value of x into the formula entails‬ ‭. Thus,‬‭1‬ − ‭𝑒‬
− ‭𝑥‬

α( )β

= ‭1‬ − ‭𝑒‬−‭1‬ = ‭0‬. ‭632‬ α
‭tells us what value of x (“location”) yields this threshold function value of 63.2% of the‬
‭above-chance maximum. From Eq. 5, we see that‬ ‭achieves 63.2% of its above-chance‬‭𝑅‬

‭𝑊‬

‭maximum when‬ ‭. Solving for‬‭P‬‭1‬ ‭in this equation yields‬ ‭’s equivalent of‬
α

‭1‬

α
‭2‬

‭𝗅𝗇‬
‭1‬−λ

‭1‬
−γ

‭1‬

‭1‬−λ
‭1‬
−‭𝑃‬

‭1‬
( )( )

‭1‬
β

‭1‬

= ‭1‬ ‭𝑅‬
‭𝑊‬

‭the Weibull’s location parameter‬ ‭, which can be expressed as‬α

‭𝑃‬
‭1‬

= γ
‭1‬

+ ‭1‬ − λ
‭1‬

− γ
‭1‬( ) ‭1‬ − ‭𝑒‬

−
α

‭2‬

α
‭1‬

( )β
‭1‬⎡

⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

= ‭𝐹‬
‭1‬
(α

‭2‬
) ‭(6)‬

‭Thus,‬ ‭takes on its threshold value at the value of‬‭P‬‭1‬ ‭given by‬‭F‬‭1‬‭(‬‭x‬‭) evaluated at the location‬‭𝑅‬
‭𝑊‬

‭parameter of F‬‭2‬‭, i.e. at‬ ‭. This result is intuitive in that the RPF derives from a‬‭𝑃‬
‭1‬

= ‭𝐹‬
‭1‬
(α

‭2‬
)

‭transformation of the input variable of‬‭F‬‭2‬ ‭from‬‭x‬‭to‬‭P‬‭1‬‭, while leaving‬‭F‬‭2‬‭’s output‬‭P‬‭2‬ ‭unchanged‬
‭(Eq. 2). Thus, since‬ ‭is the value of‬‭x‬‭at which‬‭F‬‭2‬ ‭achieves its threshold value of‬‭P‬‭2‬‭,‬ ‭must‬α

‭2‬
‭𝑅‬

‭𝑊‬

‭achieve its threshold value of‬‭P‬‭2‬ ‭at whatever value of‬‭P‬‭1‬ ‭that‬ ‭maps onto in the RPF‬α
‭2‬

‭transformation, which is just‬ ‭.‬‭𝐹‬
‭1‬
(α

‭2‬
)

‭Although the value of‬ ‭provides a measure of what‬‭P‬‭1‬ ‭value yields‬ ‭’s threshold value,‬‭𝐹‬
‭1‬
(α

‭2‬
) ‭𝑅‬

‭𝑊‬

‭its interpretation is more complex than that of‬ ‭for the Weibull function. Intuitively, lower and‬α
‭higher values of‬ ‭in the Weibull function roughly correspond to the curve “shifting” or “tilting” left‬α
‭or right on the‬‭x‬‭-axis‬‭4‬‭. By contrast, the value at which‬ ‭achieves its threshold value is strongly‬‭𝑅‬

‭𝑊‬

‭influenced by its curvature, which in turn depends on multiple parameters from‬‭F‬‭1‬ ‭and‬‭F‬‭2‬‭. For‬
‭instance, in the lower-left plot of‬‭Figure 2‬‭, the‬‭concave down and concave up curves achieve‬
‭their threshold values at very low and high values of‬‭P‬‭1‬‭, respectively, due primarily to their‬
‭differences in curvature. This difference in threshold location cannot be attributed to a shift, tilt,‬
‭or translation in an otherwise similar curve, as is the case for the Weibull, and thus‬‭𝐹‬

‭1‬
(α

‭2‬
)

‭cannot serve the same conceptual role as the Weibull’s location parameter‬ ‭.‬α

‭4‬ ‭The slope of the Weibull function is actually controlled by both 𝛼 and 𝛽, although when plotted against‬
‭log‬‭x‬‭, 𝛼 controls function translation and 𝛽 controls slope‬‭(Kingdom and Prins, 2016)(Kingdom and Prins,‬
‭2016)‬‭.‬
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‭Thus, it appears that while there are indeed aspects of the Weibull RPF’s behavior that can be‬
‭summarized with a small number of parameters –‬ ‭and‬ ‭control shape, and‬β

‭𝑅‬
α

‭𝑅‬
‭𝐹‬

‭1‬
(α

‭2‬
)

‭determines threshold – it is not clear that these parameters provide the same ease of‬
‭interpretation and leverage for understanding the behavior of the RPF in terms of‬
‭psychophysical performance as their counterparts‬ ‭and‬ ‭do for conventional psychometric‬α β
‭functions. Furthermore, the exact mathematical formulation for such parameters depends on the‬
‭psychometric functions used for‬‭F‬‭1‬ ‭and‬‭F‬‭2‬‭, entailing‬‭that different choices for these functions‬
‭may lead to different formulations for RPF summary parameters. These difficulties motivate the‬
‭alternative approaches for comparing RPFs across conditions that we develop and discuss‬
‭below.‬

‭Comparing RPFs across conditions‬
‭If using parameter values to summarize aspects of RPF behavior is not as straightforward and‬
‭perhaps not as fruitful as it is for conventional psychometric functions, what alternatives are‬
‭there for using RPFs to enrich our understanding of psychological processes?‬

‭One major goal of RPF analysis would be to investigate how the relationship between two target‬
‭psychological processes changes across different conditions. For example, analysis of the‬
‭metaperceptual RPF would be well-suited to address questions on how the relationship‬
‭between objective and subjective aspects of perceptions are influenced by various factors, such‬
‭as, “Is the relationship between subjective judgments and task accuracy the same in central‬
‭versus peripheral visual field locations?”‬‭(Odegaard et al., 2018a; Winter and Peters,‬
‭2022)(Odegaard et al., 2018a; Winter and Peters, 2022)‬‭or “Does transcranial magnetic‬
‭stimulation to a certain region of interest alter the relationship between confidence and task‬
‭accuracy?”‬‭(Peters et al., 2017a; Rahnev et al.,‬‭2012; Rounis et al., 2010; Ruby et al.,‬
‭2018)(Peters et al., 2017a; Rahnev et al., 2012; Rounis et al., 2010; Ruby et al., 2018)‬‭.‬

‭The behavior of the RPF across conditions sheds light on the relationship between‬‭P‬‭1‬ ‭and‬‭P‬‭2‬‭.‬
‭Any across-condition changes in the RPF would indicate a differential effect of condition on‬‭P‬‭1‬

‭and‬‭P‬‭2‬‭, such that the changes in‬‭P‬‭2‬ ‭due to condition‬‭could not be solely attributed to changes in‬
‭P‬‭1‬ ‭or vice versa (or else the RPF would be identical),‬‭and would demonstrate that‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭are‬
‭produced by at least partially separable processes. Alternatively, if‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭differ across‬
‭conditions, but do so in such a way that preserves the RPF describing their relationship, this‬
‭would be consistent with the possibility that the changes in‬‭P‬‭2‬ ‭are indeed attributable entirely to‬
‭changes in‬‭P‬‭1‬ ‭(or vice versa), or that both are products‬‭of a single underlying process‬
‭characterized by a constant RPF.‬

‭Below we consider two approaches to comparing RPFs across conditions: an AUC-based‬
‭approach and a model comparison approach.‬

‭AUC approach: area under the RPF curve‬
‭As discussed in the Introduction, the motivating example behind this work is performance‬
‭matching in the consciousness / metacognition literature, in which we seek to find conditions‬
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‭where objective task performance (‬‭P‬‭1‬‭) is the same but subjective reports of awareness or‬
‭confidence (‬‭P‬‭2‬‭) differ‬‭(Morales et al., 2022)(Morales et al., 2022)‬‭. Notice that the performance‬
‭matching approach essentially attempts to compare a vertical slice of two RPFs at a particular‬
‭P‬‭1‬ ‭value. Thus, a natural generalization of the performance matching approach is to compare‬
‭two RPFs across a fixed‬‭interval‬‭of‬‭P‬‭1‬ ‭values rather than at a single fixed value. Within a given‬
‭RPF, summing the values of‬‭P‬‭2‬ ‭across the entire interval of‬‭P‬‭1‬ ‭values amounts to computing the‬
‭area under the curve (AUC) of the RPF, and dividing this AUC by the length of the‬‭P‬‭1‬ ‭interval‬
‭yields the average value of‬‭P‬‭2‬ ‭over that interval. These AUCs and average‬‭P‬‭2‬ ‭values can then‬
‭be compared across conditions to assess whether condition affects‬‭P‬‭2‬ ‭over and above any‬
‭effects it may have on‬‭P‬‭1‬‭. (Note: AUCs and average‬‭P‬‭2‬ ‭values are suitable to evaluate whether‬
‭there is any RPF difference between conditions, but are not suitable if the user’s goal is to‬
‭characterize the exact shape of the RPF function; see‬‭Benefits and limitations of the AUC‬
‭method‬‭, below.)‬

‭More formally, the RPF AUC is given by‬

‭𝖠𝖴𝖢‬ =
‭𝑎‬

‭𝑏‬

∫ ‭𝑅‬(‭𝑃‬
‭1‬
)‭𝑑‬‭𝑃‬

‭1‬ ‭(7)‬

‭This integral can be computed without an analytic solution, and indeed without specifying an‬

‭equation for‬‭R‬‭, by using‬ ‭and‬ ‭to compute the RPF as‬‭𝑥‬ = ‭𝐹‬
‭1‬
−‭1‬ ‭𝑃‬

‭1‬( ) ‭𝑃‬
‭2‬

= ‭𝐹‬
‭2‬
(‭𝑥‬) ‭𝑃‬

‭2‬
= ‭𝐹‬

‭2‬
‭𝐹‬

‭1‬
−‭1‬ ‭𝑃‬

‭1‬( )( )
‭(Eq. 2) and performing numerical integration.‬

‭Since the aim of this analysis approach is to compare AUCs across conditions for a fixed‬
‭interval of‬‭P‬‭1‬ ‭values, it must be the case that all‬‭RPFs being analyzed fully span that interval. In‬
‭general, this is not guaranteed to be the case unless the fixed‬‭P‬‭1‬ ‭interval is chosen‬
‭appropriately. For instance, in a grating tilt discrimination task having conditions where the‬
‭grating is attended or unattended across several levels of grating contrast spanning the full‬
‭possible range of contrasts from 0 to 1, the fitted psychometric function for p(correct) in the‬
‭attended condition may range from chance performance of 0.5 at zero contrast to a near-ceiling‬
‭value (e.g. 0.98) at maximal contrast, whereas the fitted function for the unattended condition‬
‭may range from chance performance at zero contrast to a level of performance at maximal‬
‭contrast that is considerably lower than in the attended condition (e.g. 0.8). Thus, although the‬
‭attended condition RPF spans a‬‭P‬‭1‬ ‭interval of [0.5,‬‭0.98], its AUC can only be compared to that‬
‭of the unattended condition for a fixed‬‭P‬‭1‬ ‭interval over [0.5, 0.8].‬‭5‬

‭5‬ ‭Note that the‬‭P‬‭1‬ ‭interval over which two conditions‬‭are compared should be fixed across conditions (e.g.‬
‭attended, unattended) within a subject, but can be allowed to vary across subjects in an experiment. Here‬
‭we derive the within-subject comparison process.‬
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‭Thus, the intervals of‬‭P‬‭1‬ ‭values exhibited by each RPF being compared jointly determine lower‬
‭and upper bounds on possible intervals of‬‭P‬‭1‬ ‭values‬‭that are common to all RPFs. The lower‬
‭bound‬‭L‬‭on the common‬‭P‬‭1‬ ‭interval is given by‬

‭𝐿‬ = ‭𝗆𝖺𝗑‬
‭𝑐‬
‭ ‬‭𝗆𝗂𝗇‬

‭𝑥‬
‭ ‬‭𝑃‬

‭1‬‭ ‬‭𝑐‬,‭𝑥‬
‭ ‬ ‭(8)‬

‭where‬ ‭denotes the value of‬‭P‬‭1‬ ‭at condition‬‭c‬‭and stimulus level‬‭x‬‭. In other words, the lower‬‭𝑃‬
‭1‬‭ ‬‭𝑐‬,‭𝑥‬

‭bound for a common‬‭P‬‭1‬ ‭interval across conditions is‬‭the minimal‬‭within-condition‬‭value of‬‭P‬‭1‬ ‭that‬
‭is maximal‬‭across‬‭conditions (i.e., the smallest‬‭P‬‭1‬ ‭value shared by all conditions). By similar‬
‭reasoning, the upper bound U is given by‬

‭𝑈‬ = ‭𝗆𝗂𝗇‬
‭𝑐‬
‭ ‬‭𝗆𝖺𝗑‬

‭𝑥‬
‭ ‬‭𝑃‬

‭1‬‭ ‬‭𝑐‬,‭𝑥‬
‭ ‬ ‭(9)‬

‭i.e. the maximal within-condition value of‬‭P‬‭1‬ ‭that‬‭is minimal across conditions (i.e., the largest‬‭P‬‭1‬

‭value shared by all conditions). For AUCs to be computed with a fixed‬‭P‬‭1‬ ‭interval [‬‭a‬‭,‬‭b‬‭] that is‬
‭common to all conditions, it must be the case that‬

‭𝑎‬ ≥ ‭𝐿‬, ‭ ‬‭𝑏‬ ≤ ‭𝑈‬‭ ‬ ‭(10)‬

‭and the widest possible common‬‭P‬‭1‬ ‭interval is given‬‭by [‬‭L‬‭,‬‭U‬‭].‬

‭These considerations are illustrated in‬‭Figure 3‬‭.‬‭The psychometric functions for‬‭P‬‭1‬ ‭in conditions‬
‭A and B have different values at the minimum and maximum values of‬‭x‬‭(left panel), which‬
‭entails that their corresponding RPFs do not span the same range of‬‭P‬‭1‬ ‭values (right panel).‬
‭Thus, to compare AUC for a fixed‬‭P‬‭1‬ ‭interval, this‬‭interval must be restricted to the set of‬‭P‬‭1‬

‭values that is common to both functions (shaded region). The lower and upper bounds of this‬
‭common interval are set by the largest across-condition minimum‬‭P‬‭1‬ ‭value and the smallest‬
‭across-condition maximum‬‭P‬‭1‬ ‭value, respectively, as‬‭described in Eqs. 8 and 9.‬

‭In the example of‬‭Figure 3‬‭, RPF AUC is larger for‬‭condition A than for condition B. This‬
‭indicates that condition influences‬‭P‬‭2‬ ‭over and above‬‭its influence on‬‭P‬‭1‬‭, and that this differential‬
‭effect holds over a wide range of‬‭P‬‭1‬ ‭values.‬

‭Normalizing the AUC by the length of the‬‭P‬‭1‬ ‭interval‬‭over which it is computed yields the‬
‭average‬‭P‬‭2‬ ‭value over that interval:‬

‭𝑃‬
‭2‬

= ‭1‬
‭𝑏‬−‭𝑎‬

‭𝑎‬

‭𝑏‬

∫ ‭𝑅‬(‭𝑃‬
‭1‬
)‭𝑑‬‭𝑃‬

‭1‬
= ‭𝖠𝖴𝖢‬

‭𝑏‬−‭𝑎‬ ‭(11)‬
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‭The quantitative values of this metric are more intuitive to interpret than those for AUC. The‬
‭normalization it provides may also be desirable in cases where the‬‭P‬‭1‬ ‭intervals used to compute‬
‭AUC differ across subjects, since‬‭P‬‭1‬ ‭interval size‬‭influences AUC and the spirit of this analysis‬
‭approach is to factor out or control for the influence of‬‭P‬‭1‬‭. However, this consideration is‬
‭mitigated somewhat given that the effect of interest pertains to within-subject differences in AUC‬
‭as a function of condition, and the‬‭P‬‭1‬ ‭interval within each subject is constant across conditions.‬

‭also has an intuitive connection to the performance matching approach discussed above.‬‭𝑃‬
‭2‬

‭Whereas performance matching seeks to measure the difference between subjective reports at‬
‭a‬‭fixed‬‭value of task performance, comparing‬ ‭for the metaperceptual RPF across conditions‬‭𝑃‬

‭2‬

‭gives the‬‭average‬‭difference between subjective reports‬‭over a‬‭range‬‭of task performance‬
‭levels.‬

‭Figure 3. Comparing RPFs with the AUC approach.‬‭In‬‭this illustrative example, psychometric functions‬
‭for‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭differ across condition, and so do their‬‭corresponding RPFs. The difference in the RPFs can‬
‭be quantified by comparing the area under the curve (AUC) over the set of‬‭P‬‭1‬ ‭values that both RPFs‬
‭share in common (shaded region). Here, condition A has the higher AUC, indicating higher levels of‬‭P‬‭2‬

‭across the fixed‬‭P‬‭1‬ ‭interval. The AUCs can be divided‬‭by the length of this common‬‭P‬‭1‬ ‭interval to yield‬‭the‬
‭average‬‭P‬‭2‬ ‭values over the interval.‬

‭Nonparametric computation of AUC‬

‭In the foregoing, we have assumed that‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭data‬‭are fitted with psychometric functions‬‭F‬‭1‬

‭and‬‭F‬‭2‬‭. However, there may be cases where fitting‬‭P‬‭1‬ ‭and/or‬‭P‬‭2‬ ‭encounters difficulties, such as:‬
‭●‬ ‭The researcher may be uncertain about the most appropriate functional form to choose‬

‭for‬‭F‬‭1‬ ‭and/or‬‭F‬‭2‬‭.‬
‭●‬ ‭The researcher may prefer to avoid making parametric assumptions about‬‭F‬‭1‬ ‭and/or‬‭F‬‭2‬‭.‬
‭●‬ ‭For certain dependent variables, it may be unclear, complicated, and/or labor intensive‬

‭to develop an MLE fitting approach and implement the fitting procedure in analysis code‬
‭(consider e.g. the discussion of MLE fitting for‬‭d’‬‭,‬‭meta-‬‭d’‬‭and mean rating as discussed‬
‭above and in‬‭Supplemental Material‬‭).‬
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‭●‬ ‭When plotted against stimulus strength‬‭x‬‭, the data to be fitted may be monotonically‬
‭decreasing (e.g. reaction time data) or non-monotonic (e.g. when rating confidence in a‬
‭detection task, confidence may be high for “no” responses at low values of‬‭x‬‭and “yes”‬
‭responses at high values of‬‭x‬‭, yielding a U-shaped‬‭function of confidence when‬
‭collapsed across response type), whereas standard psychometric functions are‬
‭monotonically increasing with‬‭x‬‭.‬

‭●‬ ‭Limitations and noise in the data may cause technical difficulties with the fitting‬
‭procedure, or may yield fitted parameter values that are implausible or present analysis‬
‭difficulties (e.g. infinite slope).‬

‭These difficulties can be circumvented by computing AUC nonparametrically. The simplest‬
‭nonparametric approach is to perform linear interpolation between the data points in the plot of‬
‭P‬‭2‬ ‭vs.‬‭P‬‭1‬ ‭and compute AUC from the resulting trapezoids,‬‭analogous to the nonparametric‬
‭measure of area under the ROC curve‬‭A‬‭g‬ ‭(Pollack and Hsieh, 1969)(Pollack and Hsieh, 1969)‬‭.‬
‭A hybrid approach can also be applied in which the RPF is constructed from a parametric fit of‬
‭P‬‭1‬ ‭=‬‭F‬‭1‬‭(‬‭x‬‭) and a nonparametric estimation of‬‭P‬‭2‬ ‭=‬‭F‬‭2‬‭(‬‭x‬‭) via interpolation. (However, note that a‬
‭hybrid approach where‬‭P‬‭1‬ ‭data are interpolated and‬‭P‬‭2‬ ‭data are fitted is not viable, since the‬
‭function yielded by interpolation of‬‭P‬‭1‬ ‭will in general not be monotonic with‬‭x‬‭and so will not be‬
‭invertible, preventing the computation of the RPF as described in Eq. 2.)‬

‭In‬‭Supplemental Material‬‭we discuss methodological‬‭considerations for nonparametric‬
‭computation of RPF AUC in more detail, and in‬‭Supplemental‬‭Material‬‭we present simulations‬
‭demonstrating that nonparametric methods are similarly effective to parametric methods at‬
‭estimating the true AUC of a known generating RPF under data collection conditions typical of‬
‭those used in psychophysical experiments.‬

‭Benefits and limitations of the AUC method‬

‭Summarizing RPFs with AUC (or‬ ‭) in this manner has a number of virtues:‬‭𝑃‬
‭2‬

‭1.‬ ‭Ease of computation.‬‭RPF AUC can be computed via numerical‬‭integration based on‬
‭F‬‭1‬‭(‬‭x‬‭) and‬‭F‬‭2‬‭(‬‭x‬‭) without needing to find a closed form‬‭expression for‬‭R‬‭(‬‭P‬‭1‬‭).‬

‭2.‬ ‭Ease of interpretation.‬‭RPF AUC provides a single,‬‭easy to interpret measure‬
‭(compared to the multiple, complex, interrelated parameters of the Weibull RPF, for‬
‭example).‬

‭3.‬ ‭Universality.‬‭AUC computations are applicable to any‬‭RPF for any‬‭P‬‭1‬ ‭and‬‭P‬‭2‬‭,‬
‭regardless of the functional forms of‬‭F‬‭1‬ ‭and‬‭F‬‭2‬‭.‬

‭4.‬ ‭Robustness.‬‭AUC is more robust to measurement error‬‭than general psychometric‬
‭function parameter estimation. For instance, in certain cases small changes in the data‬
‭can yield relatively large differences in the fitted parameters without having large effects‬
‭on the overall shape of the psychometric function, which in turn would lead to only small‬
‭changes in the RPF AUC. In fact, AUC estimation can even be robust if‬‭F‬‭n‬‭(‬‭x‬‭) is‬
‭constructed from piecewise linear interpolation rather than fitting a function, further‬
‭simplifying the analysis approach; we explore this possibility in detail in the‬
‭Supplemental Material‬‭.‬
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‭The AUC method is most straightforward to interpret in cases where the RPFs do not intersect‬
‭over the chosen fixed‬‭P‬‭1‬ ‭interval, since in such cases‬‭the values of‬‭P‬‭2‬ ‭in one condition are‬
‭always higher than in the other for every value of‬‭P‬‭1‬ ‭in the interval. However, if the empirical‬
‭RPFs‬‭do‬‭intersect in this interval, then the relationship‬‭between AUCs across conditions differs‬
‭on either side of the intersection point, which complicates interpretation of AUC computed over‬
‭the whole interval. Two possibilities must be considered: (1) the “true” generating RPFs are‬
‭similar or identical over this interval, and the intersection in the empirical RPFs is due to‬
‭statistical noise; or (2) the generating RPFs are distinct and do indeed intersect over this‬
‭interval, as is validly reflected in the empirical RPFs. Since across-condition AUCs have‬
‭opposite relationships on either side of the intersection point, computing AUC over the entire‬
‭interval will tend to wash out any across-condition differences. This behavior can be a virtue that‬
‭accurately reflects the absence of an effect in case (1), but may underestimate or even fail to‬
‭detect the presence of a true effect in case (2).‬

‭For instance, consider an idealized case where over a‬‭P‬‭1‬ ‭interval [0, 1], the empirical RPF in‬
‭condition A has a constant value of 0.5, and the empirical RPF in condition B is linear with‬
‭values [0, 1] at the endpoints of the‬‭P‬‭1‬ ‭interval.‬‭In this case, RPF A forms a rectangle with base‬
‭1 and height 0.5, and RPF B forms a triangle with base 1 and height 1 that intersects RPF A at‬
‭P‬‭1‬ ‭= 0.5. Both RPFs have an AUC of 0.5 despite differing‬‭considerably in their shape, since A’s‬
‭AUC is larger than B’s over‬‭P‬‭1‬ ‭ϵ [0, 0.5] and the‬‭opposite is true over‬‭P‬‭1‬ ‭ϵ [0.5, 1].‬

‭Thus, if the “true” generating RPFs for A and B are similar or identical, and the empirical RPFs‬
‭A and B differ due to noise, their identical AUCs will accurately reflect the absence of a‬
‭difference in the generating RPFs. Conversely, if the generating RPFs have forms that are well‬
‭represented by the empirical RPFs A and B, then computing AUC over the interval [0, 1] will fail‬
‭to quantify the difference between the generating RPFs due to their intersection over that‬
‭interval. In cases where the generating RPFs intersect in this way, the model comparison‬
‭approach described below can still detect the difference between them.‬

‭Model comparison approach‬
‭An alternative approach to comparing RPFs across conditions is to capitalize on the observation‬
‭that if a functional form for the RPF is available, the parameters of this function can be‬
‭constrained in such a way as to ensure that fitted RPFs across conditions are identical. The‬
‭data can then be fitted with two different models, one of which allows parameters to vary freely‬
‭in such a way that the fitted RPFs can differ across conditions (“free model”), and one of which‬
‭constrains parameters in such a way that the fitted RPFs are constrained to be constant across‬
‭conditions (“constrained model”). Standard model comparison analysis approaches can then be‬
‭conducted to investigate whether the free or constrained model provides a better account of the‬
‭data, taking into account how the greater degrees of freedom in the free model introduce the‬
‭possibility of overfitting. This model comparison analysis can be performed e.g. with information‬
‭theoretic measures such as Akaike Information Criterion (AIC) or Bayesian Information Criterion‬
‭(BIC)‬‭(Vrieze, 2012)(Vrieze, 2012)‬‭, or alternatively with cross validation methods to assess‬
‭model generalizability‬‭(de Rooij and Weeda, 2020)(de Rooij and‬‭Weeda, 2020)‬‭.‬
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‭For instance, consider the functional form of the Weibull RPF‬ ‭discussed above (Eq. 5). A‬‭𝑅‬
‭𝑊‬

‭trivial way to ensure that‬ ‭is constant across conditions would be to constrain all parameters‬‭𝑅‬
‭𝑊‬

‭for‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭to be constant across conditions. However,‬‭a more artful approach would be to‬
‭allow the parameters of‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭to have the maximal degree of freedom possible while still‬
‭constraining the corresponding RPFs to be constant across conditions. Investigation of Eq. 5‬
‭shows that this latter goal can be achieved by constraining the following parameter values to be‬

‭constant across conditions:‬ ‭,‬ ‭,‬ ‭,‬ ‭,‬ ‭,‬ ‭, and‬ ‭. This set of constraints allows‬ ‭and‬γ
‭1‬

λ
‭1‬

β
‭1‬

γ
‭2‬

λ
‭2‬

β
‭2‬

α
‭2‬

α
‭1‬

α
‭1‬

α
‭2‬

‭to vary across conditions in the fitting of‬‭F‬‭1‬ ‭and‬‭F‬‭2‬‭, so long as the resulting parameter values‬

‭conserve constant values for‬ ‭across conditions. The free model, by contrast, would relax‬
α

‭2‬

α
‭1‬

‭some or all of these constraints and thus allow fitted RPFs to differ across conditions.‬

‭Generalizing the above discussion, there are actually multiple ways to define “constrained” and‬
‭“free” models, depending on what constraints on across-condition parameter values are‬
‭imposed over and above the key set of constraints determining whether RPFs can vary across‬
‭conditions or not. An extended model comparison analysis could thus consider a family of‬
‭models, some of which are constrained and others of which are free in the way defined above.‬
‭Interpretation of the results of such an analysis could reveal findings such that e.g. the best‬

‭fitting model constrains‬ ‭but not the‬ ‭parameters, or similar patterns, which could provide a‬
α

‭2‬

α
‭1‬

β

‭more nuanced understanding of how condition influences the RPFs and the mechanisms‬
‭underlying their behavior.‬

‭Regardless, the most basic and foundational question would still be whether the empirical RPFs‬
‭are best characterized by constrained or free models. If free models are best supported in the‬
‭model comparison analysis, this would suggest that RPFs are modulated by condition, and thus‬
‭that the psychological processes generating‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭are at least partially separable.‬
‭Conversely, if constrained models are best supported, this would suggest that the observed‬
‭RPFs are consistent with the possibility that‬‭P‬‭1‬ ‭determines‬‭P‬‭2‬ ‭(or vice versa), or that both are‬
‭generated by a single underlying process characterized by a constant RPF.‬

‭The model comparison approach has the advantages over the AUC approach that it can detect‬
‭differences in RPFs even in cases where RPFs intersect in a way that yields similar AUC‬
‭values, and that it can more specifically pinpoint which aspects of RPF behavior are influenced‬
‭by condition. However, it has the disadvantages that it is more complex and resource intensive‬
‭to conduct, and requires deriving an analytic expression for the RPF. (Note: some analytic‬
‭expressions are derived in the‬‭Supplemental Material‬‭and implemented in the open-source‬
‭RPF toolbox which accompanies this paper.)‬

‭Empirical case study‬
‭In this next section, we demonstrate the power and utility of the RPF method by applying it to‬
‭an empirical dataset in which subjects made perceptual decisions about coherent dot motion‬
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‭and rated confidence. Seven levels of motion coherence were presented, allowing construction‬
‭of psychometric functions for accuracy, confidence, and metacognitive sensitivity. Experimental‬
‭conditions were contrived so as to attempt to modulate the relationship between confidence and‬
‭accuracy, naturally inviting an RPF analysis approach.‬

‭Experimental methods‬
‭Twenty-one healthy adult human subjects viewed random dot kinematogram (RDK) stimuli‬
‭which continuously filled the entirety of a computer monitor with random dot motion. In a‬
‭two-alternative (2AFC) task design, on each trial of the experiment a circular patch of these dots‬
‭to the left or right of a central fixation cross briefly displayed coherent motion in a downward‬
‭direction. The observer’s task was to indicate which side of the display contained the coherent‬
‭downward motion and rate their confidence on a scale of 1-4; they reported both choices with a‬
‭single keypress.‬

‭We varied three aspects of the task to examine their effects on the relationship between‬
‭accuracy and confidence. First, we varied motion coherence by randomly selecting the‬
‭coherence of the downward dot motion on each trial from a list of seven values evenly spaced‬
‭between 10% and 80% coherence. Second, we varied dot density by setting the density of the‬
‭dots across the whole display on each trial to one of three levels (low = 1 dot/deg‬‭2‬‭, medium = 3‬
‭dots/deg‬‭2‬‭, high = 9 dots/deg‬‭2‬‭). Third, we varied changes‬‭in dot density across trials by either‬
‭setting dot density randomly on each trial (interleaved trial structure), or by holding dot density‬
‭constant with each block of trials (blocked trial structure).‬

‭Please see‬‭Supplemental Material‬‭for full details‬‭of participants, stimuli, equipment, and‬
‭experimental design.‬

‭Figure 4. Behavioral task procedures.‬‭(A) Each trial‬‭began with a pre-stimulus period, during which‬
‭full-field random dot motion was shown (black arrows illustrate dot motion direction). Subsequently, within‬
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‭one of two circular regions of the screen (indicated here by the red circles to the left and right of‬
‭fixation—red circles were shown to participants only during preliminary practice trials but not during‬
‭experimental trials), coherent downward dot-motion occurred, followed by a response period in which‬
‭participants indicated on which side they saw the coherent motion and rated their decision confidence.‬
‭The central red circle indicates an area around the fixation cross where no dots were presented; this red‬
‭circle was not shown to participants and is used here for illustration purposes. (B) Participants underwent‬
‭two trial structure conditions, blocked and interleaved, on two different days of testing. In the blocked‬
‭condition, dot density was constant across trials within a given block, whereas in the interleaved‬
‭condition, dot density varied randomly across trials. Blocked versus interleaved days and order of density‬
‭blocks was counterbalanced across all participants.‬

‭Data analysis‬
‭Following previous demonstrations‬‭(Koizumi et al., 2015; Odegaard et al., 2018b; Rollwage et‬
‭al., 2020; Samaha et al., 2016; Stolyarova et al., 2019)(Koizumi et al., 2015; Odegaard et al.,‬
‭2018b; Rollwage et al., 2020; Samaha et al., 2016; Stolyarova et al., 2019)‬‭, we expected higher‬
‭dot density conditions to yield higher confidence, even when task performance was similar. We‬
‭also examined whether metacognitive sensitivity – quantified as meta-‬‭d’‬‭– would differ across‬
‭dot density conditions. To explore these possibilities, we fit Weibull psychometric functions to‬‭d’‬‭,‬
‭mean confidence, and meta-‬‭d’‬‭as a function of dot motion coherence for each subject in each‬
‭condition (dot density: high, medium, low; trial structure: blocked, interleaved) using the‬
‭methods for MLE fitting of these variables developed in the‬‭Supplemental Material‬‭. This‬
‭allowed us to specify two categories of metaperceptual RPFs, one relating‬‭d’‬‭to mean‬
‭confidence and another relating‬‭d’‬‭to meta-‬‭d’‬‭; we computed these for each subject and each‬
‭condition. All RPF analyses were performed using our open-source RPF toolbox, available at‬
‭https://github.com/CNClaboratory/RPF‬‭.‬

‭For each of these metaperceptual RPFs, we then computed the AUC and‬ ‭for each level of‬‭𝑃‬‾
‭2‬

‭dot density and trial structure separately for each subject, and submitted these to 3 (Dot‬
‭Density: High, Medium, Low) x 2 (Trial Structure: Blocked, Interleaved) repeated-measures‬
‭analyses of variance (ANOVAs).‬

‭Empirical results and discussion‬
‭We found that dot density did indeed affect both mean confidence judgments and metacognitive‬
‭sensitivity (meta-‬‭d’‬‭) over and above any effects on‬‭d’‬‭, primarily in the interleaved but not‬
‭blocked trial structure.‬

‭In the plotted data (‬‭Figures 5 & 6‬‭), for illustrative‬‭purposes we show RPF curves for each trial‬
‭structure and dot density condition that are fitted to the combined group data concatenated‬
‭across all subjects, rather than an average across the fitted curves for each subject individually.‬
‭However, we remind the reader that all statistical measures were derived from single-subject‬
‭fits.‬

‭21‬

https://paperpile.com/c/nWNksy/Ly0u+iDiU+PZi3+288T+Eom4
https://paperpile.com/c/nWNksy/Ly0u+iDiU+PZi3+288T+Eom4
https://paperpile.com/c/nWNksy/Ly0u+iDiU+PZi3+288T+Eom4
https://github.com/CNClaboratory/RPF


‭For mean confidence versus‬‭d’‬‭(‬‭Figure 5‬‭), using the raw AUC in a 3 (Dot Density: High,‬
‭Medium, Low) x 2 (Trial Structure: Blocked, Interleaved) repeated-measures ANOVA, we found‬

‭a main effect of Dot Density (F(2,40) = 7.6633, p = 0.0015,‬ ‭= 0.277) but not Trial Structure‬η
‭𝑝‬
‭2‬

‭(F(1,40) = 2.0613, p = 0.1665,‬ ‭= 0.093), and a significant Trial Structure x Dot Density‬η
‭𝑝‬
‭2‬

‭interaction (F(2,40) = 4.0675, p = 0.0247,‬ ‭= 0.169) such that mean confidence increased with‬η
‭𝑝‬
‭2‬

‭increasing dot density in the interleaved but not blocked trial structure. The pattern was similar‬
‭when we used a second repeated-measures ANOVA to examine the normalized AUC measure‬

‭, with a main effect of Dot Density (F(2,40) = 6.4047, p = 0.0039,‬ ‭= 0.243) but not Trial‬‭𝑃‬‾
‭2‬

η
‭𝑝‬
‭2‬

‭Structure (F(1,40) = 0.8951, p = 0.3554,‬ ‭= 0.043) and a marginal Trial Structure x Dot Density‬η
‭𝑝‬
‭2‬

‭interaction (F(2,40) = 3.2056, p = 0.0511,‬ ‭= 0.138) – again suggestive that mean confidence‬η
‭𝑝‬
‭2‬

‭increased with increasing dot density primarily in the interleaved but not blocked trial structure.‬

‭For metacognitive sensitivity (meta-‬‭d’‬‭) versus‬‭d’‬‭(‬‭Figure 6‬‭), we observed a similar pattern.‬
‭Using raw AUC, a repeated-measures ANOVA revealed a main effect of Dot Density (F(2,40) =‬

‭5.6903, p = 0.0067,‬ ‭= 0.221) but not Trial Structure (F(1,40) = 0.0092, p = 0.9244,‬ ‭= 0),‬η
‭𝑝‬
‭2‬ η

‭𝑝‬
‭2‬

‭and again a Trial Structure x Dot Density interaction (F(2,40) = 4.0087, p = 0.0259,‬ ‭= 0.167)‬η
‭𝑝‬
‭2‬

‭such that meta-‬‭d’‬‭was significantly higher with increasing‬‭dot density in the interleaved but not‬
‭blocked trial structure. A final repeated-measures ANOVA on the normalized AUC measure‬‭𝑃‬‾

‭2‬

‭for meta-‬‭d’‬‭revealed again a main effect of Dot Density (F(2,40) = 4.4246, p = 0.0184,‬ ‭=‬η
‭𝑝‬
‭2‬

‭0.181) but not Trial Structure (F(1,40) = 0.8020, p = 0.3811,‬ ‭= 0.039), and a trending‬η
‭𝑝‬
‭2‬

‭interaction between Trial Structure and Dot Density (F(2,40) = 2.9437, p = 0.0642,‬ ‭= 0.128) –‬η
‭𝑝‬
‭2‬

‭again suggestive that metacognitive sensitivity was higher in higher dot density conditions,‬
‭primarily in the interleaved trial structure.‬
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‭Figure 5. Results of the empirical case study showing the metaperceptual RPF relating‬‭d’‬‭and‬
‭mean confidence ratings.‬‭Plots here visualize the‬‭statistical effects across subjects (see‬‭Figure 7‬‭)‬‭via‬
‭direct fits to the group-level data. (A-C) show‬‭F‬‭1‬ ‭(‬‭d’‬‭versus dot motion coherence),‬‭F‬‭2‬ ‭(mean confidence‬
‭versus dot motion coherence), and the RPF‬‭R‬‭(mean‬‭confidence versus‬‭d’‬‭)‬‭for the blocked trials; (D-F)‬
‭show the same for the interleaved trials. Fitted RPFs for the blocked (C) and interleaved (F) trial structure‬
‭show visually that the blocked trials resulted in little-to-no apparent differences in mean confidence as a‬
‭function of dot density, while the interleaved trials show RPF separation with higher mean confidence in‬
‭higher dot density conditions over the same interval of task performance. Shaded regions in (C) and (F)‬
‭show the‬‭d'‬‭interval common to all dot density conditions‬‭in the group-level data.‬
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‭Figure 6. Results of the empirical case study showing the metaperceptual RPF relating‬‭d’‬‭and‬
‭metacognitive sensitivity, measured with meta-‬‭d’‬‭.‬‭Plots here visualize the statistical effects across‬
‭subjects (see‬‭Figure 7‬‭) via direct fits to the group-level‬‭data. Similar to the plots for mean confidence,‬
‭(A-C) show‬‭F‬‭1‬ ‭(‬‭d’‬‭versus dot motion coherence),‬‭F‬‭2‬ ‭(meta-‬‭d’‬‭versus dot motion coherence), and the RPF‬
‭R‬‭(meta-‬‭d’‬‭versus‬‭d’‬‭)‬‭for the blocked trials; (D-F)‬‭show the same for the interleaved trials. Fitted RPFs for‬
‭the blocked (C) and interleaved (F) trial structure show visually that the blocked trials resulted in no‬
‭apparent differences in meta-‬‭d’‬‭as a function of dot‬‭density, while the interleaved trials show RPF‬
‭separation with higher meta-‬‭d’‬‭in higher dot density‬‭conditions over the same interval of task‬
‭performance. Shaded regions in (C) and (F) show the‬‭d'‬‭interval common to all dot density conditions‬‭in‬
‭the group-level data. Dashed lines in (C) and (F) show  the line of unity where meta-‬‭d’‬‭=‬‭d’‬‭, corresponding‬
‭to the expected value of meta-‬‭d’‬‭under signal detection‬‭theory.‬
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‭Figure 7. Results of the empirical case study showing the AUC-based analyses using raw AUC‬
‭and‬ ‭.‬‭Both raw AUC (A, C) and its normalized variant,‬ ‭(B, D) confirm visual inspection of the RPFs in‬‭𝑃‬‾

‭2‬
‭𝑃‬‾

‭2‬

‭the previous figures, showing significant main effects of the ANOVA factor Dot Density and interactions‬
‭between the ANOVA factors Trial Structure (Blocked vs Interleaved) and Dot Density. That is, increasing‬
‭dot density led to both higher mean confidence and higher metacognitive sensitivity (meta‬‭-d’‬‭) over a‬
‭matched performance interval, especially in the interleaved trials. See main text for statistical details.‬

‭Together, these results demonstrate that dot density does indeed affect both mean reported‬
‭confidence rating and metacognitive sensitivity (meta-‬‭d’‬‭),‬‭especially when density is varied‬
‭pseudorandomly on every trial.‬

‭These findings are of utility to the community in several ways. First, from a basic science‬
‭perspective, the observation that a manipulation as simple as the density of an RDK can induce‬
‭changes in overall mean confidence over and above any effect on task performance capacity is‬
‭consistent with findings in the literature on the so-called “positive evidence” or‬
‭“response-congruent evidence” bias in metacognition‬‭(Rollwage et al., 2020; Samaha and‬
‭Denison, 2022)(Rollwage et al., 2020; Samaha and Denison, 2022)‬‭. In a number of empirical‬
‭investigations, it has been shown that higher amounts of absolute magnitude of evidence‬
‭available to the observer to make a perceptual decision are associated with increased‬
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‭subjective confidence reports; these manipulations of evidence can take the form of contrast or‬
‭luminance (e.g.,‬‭(Koizumi et al., 2015; Rausch et al., 2017; Samaha et al., 2019, 2016)(Koizumi‬
‭et al., 2015; Rausch et al., 2017; Samaha et al., 2019, 2016)‬‭), dot motion coherence‬
‭(Zylberberg et al., 2012)(Zylberberg et al., 2012)‬‭, or even more cognitive type evidence such as‬
‭facial attractiveness‬‭(Ceja et al., 2022)(Ceja et al., 2022)‬‭. Models have been proposed to‬
‭account for these and similar findings, placing constraints on how confidence might be (neurally)‬
‭computed in perceptual decisions (e.g.,‬‭(Maniscalco‬‭et al., 2021, 2016; Peters et al.,‬
‭2017c)(Maniscalco et al., 2021, 2016; Peters et al., 2017c)‬‭).‬

‭Here we add to these previous findings by showing that in addition to dot density influencing‬
‭overall confidence ratings separately from its influence on task performance, dot density‬‭also‬
‭influences metacognitive sensitivity – here measured with meta-‬‭d’‬‭. This new empirical finding‬
‭meaningfully adds to understanding of the computational relationship between performance and‬
‭confidence ratings even on a trial-by-trial basis, providing rich opportunities for future‬
‭computational studies to use these and similar kinds of data to arbitrate among candidate‬
‭process models giving rise to metacognitive judgments (e.g.,‬‭(Adler and Ma, 2018a, 2018b;‬
‭Aitchison et al., 2015; Denison et al., 2018; Kiani et al., 2014; Maniscalco et al., 2016; Miyoshi‬
‭and Lau, 2020; Peters et al., 2017a, 2017c; Peters and Lau, 2015; Winter and Peters, 2022;‬
‭Zylberberg et al., 2016, 2014)(Adler and Ma, 2018a, 2018b; Aitchison et al., 2015; Denison et‬
‭al., 2018; Kiani et al., 2014; Maniscalco et al., 2016; Miyoshi and Lau, 2020; Peters et al.,‬
‭2017a, 2017c; Peters and Lau, 2015; Winter and Peters, 2022; Zylberberg et al., 2016, 2014)‬‭).‬
‭It is also notable that the effect appeared primarily in the interleaved condition, building upon‬
‭recent work exploring observers’ capacity to update type 2 criteria with changing uncertainty‬
‭conditions‬‭(Lee et al., 2023; Rahnev and Denison,‬‭n.d.)(Lee et al., 2023; Rahnev and Denison,‬
‭n.d.)‬‭.‬

‭However, our intent with this empirical demonstration was not only to demonstrate that‬
‭manipulations of dot motion evidence may influence confidence in separate ways than‬
‭influences on task performance, which had previously been established. Here, we were also‬
‭concerned with showing how full RPF analyses can provide benefit over measuring differences‬
‭in confidence or metacognitive sensitivity at one or two levels of (matched) performance.‬

‭Importantly, one can see clearly through the RPF approach that the size of the effect on‬
‭subjective experience depends strongly on the performance level at which the effect is‬
‭measured: for both mean confidence (‬‭Figures 5 & 7‬‭)‬‭and metacognitive sensitivity (‬‭Figures 6‬
‭& 7‬‭), the difference in the subjective report appears‬‭to grow as a function of task performance;‬
‭this occurs with specific quantitative relationships to task performance in both cases. By‬
‭extension, if a researcher were to try to measure the effect size of a manipulation’s influence on‬
‭mean confidence or meta-‬‭d’‬‭, but were unable to precisely‬‭match task performance across‬
‭conditions or subjects, the effect size of interest would be at best poorly estimated, or at worst‬
‭entirely missed (e.g., at lower levels of‬‭d’‬‭). By‬‭measuring and fitting the entire RPF and‬
‭engaging in the AUC-based analyses presented here, such differences due to nuisance‬
‭variables can be minimized, revealing a robust and quantitatively precise measure of subjective‬
‭experience differences independent of task performance. Importantly, process models of‬
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‭metacognition or subjective experience in general – such as those mentioned above – become‬
‭much more highly constrained if they must explain behavioral data across the entire RPF in‬
‭multiple conditions, opening an exciting new set of questions for the community‬‭(Fleming, 2023;‬
‭Peters, 2022)(Fleming, 2023; Peters, 2022)‬‭.‬

‭While the data presented here perhaps consist of fewer subjects than would be ideal, they‬
‭nevertheless demonstrate the robustness of the RPF method to small numbers of subjects or‬
‭even to few trials per condition. Here, we collected only 36 trials per condition (7 levels of RDK‬
‭motion coherence, Blocked vs Interleaved Trial Structure, and 3 levels of Dot Density). The‬
‭entire dataset was collected across only approximately two hours of testing per subject,‬
‭meaning that even as few as 36 trials per condition can be sufficient for conducting robust and‬
‭precise RPF analyses comparing across conditions with the AUC-based metrics. (Of course,‬
‭more trials are better, and following best practices for fitting d’ or meta-d’ in any dataset would‬
‭suggest at least 100 trials per condition for robust estimates of these metrics.) Future work‬
‭should seek to confirm and expand the initial findings presented here regarding the effect of dot‬
‭density manipulations on performance, confidence, metacognitive sensitivity, and their‬
‭interrelations.‬

‭Overall, this empirical case study highlights an exciting direction for the study of subjective‬
‭experience and for use of the RPF analytic approach in general. We believe these results and‬
‭the analytic approach to be of great value both within the metacognition and subjective‬
‭experience community‬‭(Michel et al., 2019; Rahnev et al., 2022)(Michel et al., 2019; Rahnev‬‭et‬
‭al., 2022)‬‭and beyond.‬

‭General discussion and future directions‬

‭Summary‬
‭In this piece we have laid out a novel framework for investigating, in general, the quantitative‬
‭relationship between two psychological processes measured under noisy conditions and how‬
‭these relationships may vary with any experimental manipulation or intervention that is of‬
‭interest to the researcher. This framework includes the derivation of the‬‭relative psychometric‬
‭function‬‭(RPF) under parametric assumptions, including‬‭special considerations for fitting‬
‭customized psychometric functions to non-standard psychometric variables such as task‬
‭performance capacity measured with the signal detection theoretic metric‬‭d’‬‭, confidence ratings,‬
‭and metacognitive sensitivity (meta-‬‭d’‬‭)‬‭(Maniscalco and Lau, 2014, 2012)(Maniscalco and Lau,‬
‭2014, 2012)‬‭. We also developed and tested a series of metrics and algorithms designed to‬
‭provide intuitive insight into how the RPF may change across experimental conditions, including‬
‭the area under the RPF (AUC) method and its normalized variant,‬ ‭. These metrics provide a‬‭𝑃‬‾

‭2‬

‭clear, precise, and interpretable approach for interpreting variations in RPFs across‬
‭experimental conditions. And for those who wish to precisely evaluate other relationships‬
‭among RPFs or how they may be captured by process models (e.g. signal detection or‬
‭Bayesian decision theoretic, evidence accumulation models, etc.), we also lay out a model‬
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‭comparison approach in which the RPF can be constrained to be equivalent across conditions‬
‭or free to vary in different ways. This model-based approach can provide important nuance and‬
‭context to supplement the AUC-based analyses developed here.‬

‭We demonstrated the utility of the RPF framework by way of example, showing how the RPF‬
‭approach can facilitate quantifying precisely how a manipulation of interest impacts subjective‬
‭processing independent of (or over and above effect on) objective processing. In this case study‬
‭on the metaperceptual RPF, we found that our dot density manipulation led to changes in mean‬
‭confidence and also changes in metacognitive sensitivity (meta-‬‭d’‬‭) that were separable from the‬
‭influence of this manipulation on task performance in this two-alternative forced-choice task.‬

‭Although these empirical results are valuable and contribute to the literature on how‬
‭metacognition behaves, our primary excitement lies in the promise of the RPF framework to‬
‭study the quantitative relationship between any pair of psychological variables the researcher‬
‭may desire. Thus, we emphasize that the RPF framework can be used not only to study the‬
‭relationship between objective processing capacity and subjective experience, but for‬
‭characterizing the quantitative relationship among any two (likely nonlinearly) related‬
‭psychological processes – including those for which no functional form relating each process to‬
‭objective stimulus properties is known or presumed (see‬‭Supplemental Material‬‭for details).‬

‭This is also why we have developed the RPF toolbox as an open-source community resource,‬
‭available for download and extension from‬‭https://github.com/CNClaboratory/RPF‬‭.‬‭The toolbox‬
‭supports a full analysis pipeline from raw trial-level data for a single subject to comprehensive‬
‭RPF analysis results and plots. It is designed to allow for an easy, out-of-the-box analysis‬
‭pipeline that can be conducted using only a few high-level functions while implicitly handling‬
‭many of the subtleties and complexities of RPF analysis under the hood, while still allowing for‬
‭complete control and customizability of the finer details of the analysis where desired. It is highly‬
‭flexible, including built-in support for computing many dependent variables of interest from‬
‭trial-level data and various methods for fitting or interpolating the data. For more details, please‬
‭see‬‭Supplementary Material‬‭, section “RPF toolbox”.‬

‭Advantages of the RPF method over standard performance-matching for‬
‭the study of subjective experience‬
‭A primary use for RPF analysis is for isolating the neural or computational correlates of‬
‭subjective aspects of perception from those giving rise to task performance. Since Lau first‬
‭articulated this need‬‭(Lau, 2008; Lau and Passingham, 2006)(Lau, 2008; Lau and Passingham,‬
‭2006)‬‭, many groups have sought to control for ‘performance confounds’ by finding one or two‬
‭levels of matched performance across various experimental manipulations, and then examining‬
‭how subjective measures differ‬‭(Morales et al., 2022; Peters et al., 2017b)(Morales et al., 2022;‬
‭Peters et al., 2017b)‬‭. However, as introduced in the introduction, this performance matching‬
‭approach is unsatisfactory for several major reasons: it relies on a statistical null effect (finding‬
‭conditions where subjective experience differs but performance‬‭fails‬‭to differ), and differences in‬
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‭subjective experience can depend on the level of matched performance selected by the‬
‭experimenter.‬

‭As we have seen, RPF analysis circumvents these challenges by revealing differences in‬‭P‬‭2‬

‭(e.g., confidence) over an entire matched interval of‬‭P‬‭1‬ ‭(e.g., performance). Importantly,‬
‭however, we can also relate components of RPF analysis directly back to more traditional‬
‭performance-matching approaches to facilitate direct comparison with existing literature. For‬
‭example, we can see that if one measures the entire RPF for each condition of interest, RPF‬
‭AUC analyses can be tuned to any intervals within the available common‬‭P‬‭1‬ ‭interval across‬
‭conditions of interest. In the limit as this interval approaches zero, computing RPF AUC reduces‬
‭to “reading off” the‬‭P‬‭2‬ ‭(subjective) values given‬‭a particular‬‭P‬‭1‬ ‭(performance) value, i.e. selecting‬
‭exactly‬‭the matched-performance level desired through‬‭relying on the fitted functions. Doing so‬
‭avoids the methodological and statistical disadvantages of using staircasing or other methods to‬
‭discover conditions where subjective measures vary but performance measures‬‭fail‬‭to vary. The‬
‭freedom to select one or two levels of exactly matched performance also evokes‬
‭performance-matching studies which have used two or more levels of performance-matched‬
‭conditions (e.g., hard and easy,‬‭(Koizumi et al., 2015)(Koizumi et al., 2015)‬‭; see‬‭(Rahnev et al.,‬
‭2020)(Rahnev et al., 2020)‬‭for other potential datasets). RPF AUC analyses could be used to‬
‭reexamine such data using RPF AUC analyses, potentially providing a more principled analytic‬
‭approach; this might also be possible through the interpolation-based nonparametric approach‬
‭(described in more detail in‬‭Supplemental Material‬‭) even if fitting a parametric RPF is not‬
‭possible. Thus, RPF analysis provides a natural extension to more traditional‬
‭performance-matching approaches in a way that facilitates direct comparison to previous‬
‭empirical and theoretical literature.‬

‭Relationship to other recent work linking relative and absolute judgments‬
‭The study of psychophysics has a long and clever history, spanning 150 years of quantitative‬
‭psychological research. A large literature has developed documenting the relationship between‬
‭small changes in physical stimulus magnitude and either humans’ (or non-human animals’)‬
‭ability to discriminate or detect such differences, as well as the relationship between physical‬
‭stimulus magnitude and absolute stimulus magnitude judgments – even of a subjective nature‬
‭(brightness, loudness, painfulness, and so on). Weber’s law, Fechner’s law, Stevens’ power law‬
‭– these are all well-known, foundational examples that collectively support quantitative‬
‭psychology across nearly countless domains of study.‬

‭Recently, a unifying framework linking such relative and absolute psychometric judgments – i.e.‬
‭the relationship between questions such as “Was the left light brighter than the right one?”‬
‭versus “How bright is this light?” – was proposed by Zhou and colleagues‬‭(2024)(2024)‬‭. In this‬
‭work, the authors combined generalizations of work by Fechner and classic signal detection‬
‭theory to show how internal noise properties that accompany stimulus representation can‬
‭explain so-called “power law” intensity percepts. This unifying framework thus elegantly links‬
‭both relative and absolute psychophysical judgments to stimulus properties in the environment.‬
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‭Here we propose a framework to discover how to relate‬‭any‬‭two psychological processes – not‬
‭just relative and absolute intensity judgments. Specifically, we have through our case study‬
‭focused on the “metaperceptual” RPF. This form of the RPF is thus not limited to judgments‬
‭about the subjective evaluation of‬‭stimuli in the‬‭world‬‭(absolute magnitude estimation‬
‭judgments), but is also capable of handling‬‭introspective‬‭or‬‭metacognitive‬‭judgments‬
‭(judgments about one’s own processing capacity or one’s own internal experience). In other‬
‭words, the metaperceptual RPF is sufficiently general so as to evaluate the relationship between‬
‭the world and first-order internal representations of the world, and between those first-order‬
‭internal representations and higher-order metacognitive or introspective evaluation of them‬
‭(Brown et al., 2019; Overgaard and Mogensen, 2017)(Brown et al., 2019; Overgaard and‬
‭Mogensen, 2017)‬‭. Thus, the metaperceptual RPF directly addresses recent calls for a‬
‭psychophysical introspective research program‬‭(Fleming, 2023; Kammerer and Frankish, 2023;‬
‭Morales, 2024; Peters, 2024)(Fleming, 2023; Kammerer and Frankish, 2023; Morales, 2024;‬
‭Peters, 2024)‬‭as a targeted technique for understanding phenomenological experience in‬
‭general‬‭(Peters, 2024, 2022)(Peters, 2024, 2022)‬‭, building upon previous research programs‬
‭seeking to isolate subjective experience for scientific study by holding performance constant‬
‭(Lau, 2008; Lau and Passingham, 2006; Morales et al., 2022; Peters et al., 2017b)(Lau, 2008;‬
‭Lau and Passingham, 2006; Morales et al., 2022; Peters et al., 2017b)‬‭. We‬‭expect that other‬
‭field- and question-specific variants of the RPF will emerge, e.g. relating confidence judgments‬
‭to reaction times, clarity assessments to criterion bias, or even extension to triads of variables or‬
‭more.‬

‭Final thoughts‬
‭In sum, the RPF framework holds great promise as a foundation for the next generation of‬
‭psychophysics. To facilitate the exploration and use of this framework across disciplines and‬
‭psychological areas of study, we encourage interested readers to make use of and extend the‬
‭open-source RPF toolbox (‬‭https://github.com/CNClaboratory/RPF‬‭).‬
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‭Supplemental Material‬

‭Supplementary information for fitting and assessing the RPF‬

‭Maximum likelihood estimation (MLE) fitting of non-probabilistic‬
‭psychometric functions‬
‭When a psychometric function ψ(x; θ) is fitted to response probabilities (e.g. p(correct)), the‬
‭likelihood of the data under ψ is derived by treating trial-level outcomes as Bernoulli trials. This‬
‭entails assuming that for each level of stimulus strength‬‭x‬‭, the probability of a “success” on a‬
‭given trial (e.g. a report of stimulus detection, or a correct discrimination response) is constant‬
‭and independent of outcomes on other trials. Under these assumptions, the joint probability of‬
‭all trial outcomes is the product of the probability of each individual trial outcome. Thus, if the‬
‭probabilities of a trial outcome t being 0 or 1 at stimulus strength x are given by‬

‭𝑝‬
‭θ‬‭ ‬‭𝑡‬=‭1‬,‭𝑥‬

= ψ ‭𝑥‬; ‭θ‬( )

‭𝑝‬
‭θ‬‭ ‬‭𝑡‬=‭0‬,‭𝑥‬

= ‭1‬ − ψ ‭𝑥‬; ‭θ‬( )
‭(S1)‬

‭then the likelihood of all trial outcomes‬‭t‬‭according‬‭to ψ(x;θ) is given by‬

‭𝐿‬ θ‭ ‬‭|‬‭ ‬‭𝒕‬( ) =
‭𝑡‬,‭𝑥‬
∏ ‭ ‬‭𝑝‬

‭θ‬‭ ‬‭𝑡‬,‭𝑥‬
‭ ‬‭𝑛‬

‭𝑡‬,‭𝑥‬ ‭(S2)‬

‭where‬ ‭is the number of occurrences of trial‬‭outcome‬‭t‬‭for stimulus strength‬‭x‬‭. Using the‬‭ ‬‭𝑛‬
‭𝑡‬,‭𝑥‬

‭more convenient log likelihood,‬

log ‭𝐿‬ θ‭ ‬‭|‬‭ ‬‭𝐭‬( )‭ ‬ =
‭𝑡‬,‭𝑥‬
∑ ‭ ‬‭𝑛‬

‭𝑡‬,‭𝑥‬
log ‭𝑝‬

‭θ‬‭ ‬‭𝑡‬,‭𝑥‬ ‭(S3)‬

‭The MLE estimate of θ is then the value of θ that maximizes likelihood (or equivalently, log‬
‭likelihood).‬

‭However, since this approach to MLE fitting assumes a probabilistic psychometric function, it‬
‭cannot be applied to non-probabilistic psychometric functions fitted to variables such as‬‭d’‬‭,‬
‭which raises the question of how fitting should proceed in such cases.‬
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‭A simple approach would be to minimize the sum of the squared errors of the fit at each level of‬
‭x‬‭. When the errors of the fit can be assumed to be‬‭normally distributed with constant variance,‬
‭there is a direct relationship between SSE and log likelihood given by‬

log ‭𝐿‬ θ( )‭ ‬ =− ‭1‬
‭2‬ ‭ ‬‭𝑛‬‭ ‬log

‭𝑆𝑆𝐸‬
θ

‭𝑛‬( ) ‭(S4)‬

‭and the parameters θ that minimize SSE also maximize likelihood‬‭(Burnham and Anderson,‬
‭2002)(Burnham and Anderson, 2002)‬‭.‬

‭However, such assumptions may not always hold. For instance, while the sampling distribution‬
‭of‬‭d’‬‭is approximately normal, its variance is not constant‬‭(Macmillan and Creelman, 2004;‬
‭Miller, 1996)(Macmillan and Creelman, 2004; Miller, 1996)‬‭. For a fixed, unbiased criterion, the‬
‭sampling variance of‬‭d’‬‭increases as the true value of‬‭d’‬‭increases. Additionally, for a fixed value‬
‭of true‬‭d’‬‭, sampling variance depends on the true hit rate and false alarm rate, with values‬
‭closer to 0 or 1 for either variable leading to higher variance in the estimated‬‭d’‬‭. For cases such‬
‭as this, SSE cannot be used to compute likelihood, and minimizing SSE will not give a‬
‭maximum likelihood estimate. Not being able to compute likelihood also hinders the ability of the‬
‭fit to be assessed in conventional model comparison analyses, which require knowledge of the‬
‭fit’s likelihood‬‭(Burnham and Anderson, 2002)(Burnham‬‭and Anderson, 2002)‬‭.‬

‭Thus, where possible, it is always preferable to have an expression for the likelihood of the data‬
‭given the model which makes minimal assumptions about the data being fitted. The likelihood‬
‭function can then be used as a basis for MLE fitting.‬

‭Below we derive methods for MLE fitting of psychometric functions to three variables of interest:‬
‭d’‬‭, meta-‬‭d’‬‭, and mean rating. In each of these cases,‬‭we use likelihood functions that assign‬
‭probabilities to trial-level data using an appropriate model, which only requires making the‬
‭standard assumption that trial outcome probabilities are independent across trials. All of these‬
‭methods are implemented in the RPF toolbox (‬‭https://github.com/CNClaboratory/RPF‬‭).‬

‭Scaled psychometric functions‬

‭In considering how to approach fitting a psychometric function to non-probabilistic dependent‬
‭variables, we first note that the function to be fitted cannot be a function that ranges from 0 to 1‬
‭to model response probabilities, e.g. as in the Weibull function given in Eq. 1 of the main‬
‭manuscript. In the general case, the dependent variable to be fitted cannot be assumed to have‬
‭an upper bound on its possible values, and so the fitted psychometric function cannot assume‬
‭an‬‭a priori‬‭maximum value.‬

‭However, just as in the modeling of response probabilities we use the lapse rate parameter λ to‬
‭allow for the possibility that asymptotic performance may not reach the maximal value of 1 even‬
‭for maximal or arbitrarily large values of‬‭x‬‭, similarly‬‭it may be reasonable in certain cases to‬
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‭posit a practical upper bound for a non-probabilistic dependent variable to which it asymptotes‬
‭as‬‭x‬‭increases. This asymptotic upper bound can be captured using a parameter of the fitted‬
‭psychometric function. To differentiate this parameter for asymptotic performance from the‬
‭probabilistic lapse rate λ, we here give it the general name ω.‬

‭Thus, a simple way to adapt any probabilistic psychometric function ψ(x; α, β, γ, λ) to fit a‬
‭non-probabilistic dependent variable is to adapt its formula so that it ranges over [γ, ω] rather‬
‭than [γ, 1-λ]. For instance, for the probabilistic Weibull function‬

‭𝑊‬ ‭𝑥‬; ‭α‬, ‭β‬, ‭γ‬, λ( ) = ‭γ‬ + ‭1‬ − ‭λ‬ − ‭γ‬( ) ‭1‬ − ‭𝑒‬
− ‭𝑥‬

α( )β
⎡⎢⎢⎣

⎤⎥⎥⎦
‭(S5)‬

‭we can rewrite this as a‬‭scaled‬‭Weibull function‬

‭𝑊‬
‭𝑆‬

‭𝑥‬; ‭α‬, ‭β‬, ‭γ‬, ‭ω‬( ) = ‭γ‬ + ‭ω‬ − ‭γ‬( ) ‭1‬ − ‭𝑒‬
− ‭𝑥‬

α( )β
⎡⎢⎢⎣

⎤⎥⎥⎦
‭(S6)‬

‭Similar approaches can be used to adapt any probabilistic psychometric function. We use the‬
‭general term‬‭scaled psychometric functions‬‭to refer‬‭to functions that have been adapted to‬
‭apply to non-probabilistic dependent variables by virtue of ranging from γ to ω.‬

‭d’‬
‭In line with the above discussion, here we consider the question of how to perform an MLE fit of‬
‭a scaled psychometric function ψ‬‭S‬ ‭to a set of‬‭d’‬‭data‬‭over a set of‬‭x‬‭values.‬

‭Using the upper bound on computed‬‭d’‬‭to inform ω‬

‭The classical signal detection theory (SDT) model‬‭(Macmillan and Creelman, 2004)(Macmillan‬
‭and Creelman, 2004)‬‭models a task in which an observer is repeatedly presented with stimuli‬
‭from two stimulus classes denoted S1 and S2, and on each trial must categorize the presented‬
‭stimulus by responding “S1” or “S2”.  The SDT measure of sensitivity‬‭d’‬‭measures the‬
‭signal-to-noise ratio of perceptual evidence occurring under presentations of S1 and S2, and is‬
‭computed from empirical hit rate (HR) and false alarm rate (FAR) data in accordance with the‬
‭following equations:‬

‭𝖧𝖱‬ = ‭𝑝‬(‭𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾‬ = ‭"𝖲2"‬‭ ‬‭ ‬‭|‬‭ ‬‭𝗌𝗍𝗂𝗆𝗎𝗅𝗎𝗌‬ = ‭𝖲2‬) = ‭𝑛‬(‭𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾‬=‭"𝖲2"‬‭ ‬‭ ‬‭∩‬‭ ‬‭𝗌𝗍𝗂𝗆𝗎𝗅𝗎𝗌‬=‭𝖲2‬)
‭𝑛‬(‭𝗌𝗍𝗂𝗆𝗎𝗅𝗎𝗌‬=‭𝖲2‬) ‭(S7)‬
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‭𝖥𝖠𝖱‬ = ‭𝑝‬(‭𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾‬ = ‭"𝖲2"‬‭ ‬‭ ‬‭|‬‭ ‬‭𝗌𝗍𝗂𝗆𝗎𝗅𝗎𝗌‬ = ‭𝖲1‬)‭ ‬ = ‭𝑛‬(‭𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾‬=‭"𝖲2"‬‭ ‬‭ ‬‭∩‬‭ ‬‭𝗌𝗍𝗂𝗆𝗎𝗅𝗎𝗌‬=‭𝖲1‬)
‭𝑛‬(‭𝗌𝗍𝗂𝗆𝗎𝗅𝗎𝗌‬=‭𝖲1‬)

‭𝑑‬‭'‬ = ‭𝑧‬ ‭𝖧𝖱‬( ) − ‭𝑧‬ ‭𝖥𝖠𝖱‬( )

‭where‬‭n‬‭denotes a trial count function returning the‬‭number of trials for which the specified‬
‭condition is true, and‬‭z‬‭is the inverse of the standard‬‭normal CDF. Hereafter, we use “resp” and‬
‭“stim” to abbreviate occurrences of “response” and “stimulus” in equations.‬

‭If either of the empirical HR or FAR equals 0 or 1, then‬‭d’‬‭computed in the above way is infinite.‬
‭Typically, such cases can be considered to be an artifact of noisy data for which the “true” HR‬
‭and FAR are both greater than 0 and less than 1, rather than a veridical measurement of infinite‬
‭d’‬‭. To circumvent this numerical issue, it is standard‬‭practice to use an adjustment to the‬
‭computed HR and FAR to ensure a finite value for estimated‬‭d’‬‭(Macmillan and Creelman,‬
‭2004)(Macmillan and Creelman, 2004)‬‭. For instance, one approach is to add 0.5 to every‬
‭response count cell before computing‬‭d’‬‭(Brown and White, 2005; Hautus, 1995)(Brown and‬
‭White, 2005; Hautus, 1995)‬‭, which can be thought of as adding one “dummy” trial for each of S1‬
‭and S2, treating each of these as counting halfway towards “S1” and “S2” responses. More‬
‭formally,‬

‭𝖧𝖱‬
‭𝖺𝖽𝗃‬

= ‭𝑛‬(‭𝗋𝖾𝗌𝗉‬=‭"𝖲2"‬‭ ‬‭ ‬‭∩‬‭ ‬‭𝗌𝗍𝗂𝗆‬=‭𝖲2‬)+‭0‬.‭5‬
‭𝑛‬ ‭𝗌𝗍𝗂𝗆‬=‭𝖲2‬( )+‭1‬

‭𝖥𝖠𝖱‬
‭𝖺𝖽𝗃‬

= ‭𝑛‬(‭𝗋𝖾𝗌𝗉‬=‭"𝖲2"‬‭ ‬‭ ‬‭∩‬‭ ‬‭𝗌𝗍𝗂𝗆‬=‭𝖲1‬)+‭0‬.‭5‬
‭𝑛‬ ‭𝗌𝗍𝗂𝗆‬=‭𝖲1‬( )+‭1‬

‭𝑑‬‭'‬
‭𝖺𝖽𝗃‬

= ‭𝑧‬ ‭𝖧𝖱‬
‭𝖺𝖽𝗃‬( ) − ‭𝑧‬ ‭𝖥𝖠𝖱‬

‭𝖺𝖽𝗃‬( )
‭(S8)‬

‭This adjustment scheme has the effect of imposing a maximum value for computed‬‭d’‬‭, which‬
‭occurs in the case where HR‬‭adj‬ ‭and FAR‬‭adj‬ ‭take on‬‭their maximum and minimum possible‬
‭values, respectively:‬

‭𝖧𝖱‬
‭𝖺𝖽𝗃‬‭ ‬‭𝗆𝖺𝗑‬

= ‭𝑛‬(‭𝗌𝗍𝗂𝗆‬=‭𝖲2‬)+‭0‬.‭5‬
‭𝑛‬ ‭𝗌𝗍𝗂𝗆‬=‭𝖲2‬( )+‭1‬

‭𝖥𝖠𝖱‬
‭𝖺𝖽𝗃‬‭ ‬‭𝗆𝗂𝗇‬

= ‭0‬.‭5‬
‭𝑛‬ ‭𝗌𝗍𝗂𝗆‬=‭𝖲1‬( )+‭1‬

‭𝑑‬‭'‬
‭𝖺𝖽𝗃‬‭ ‬‭𝗆𝖺𝗑‬

= ‭𝑧‬ ‭𝖧𝖱‬
‭𝖺𝖽𝗃‬‭ ‬‭𝗆𝖺𝗑‬( ) − ‭𝑧‬ ‭𝖥𝖠𝖱‬

‭𝖺𝖽𝗃‬‭ ‬‭𝗆𝗂𝗇‬( )
‭(S9)‬

‭Thus, when fitting‬‭d’‬‭adj‬ ‭data with a scaled psychometric‬‭function,‬‭d’‬‭adj max‬ ‭presents a natural upper‬
‭bound for the value of ω. It may be desirable to constrain ω to equal‬‭d’‬‭adj max‬ ‭in certain cases‬
‭where it can reasonably be assumed that asymptotic performance is very high, e.g. to improve‬
‭the stability of psychometric function fits for data with low trial counts. More complex‬
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‭approaches might involve making assumptions about how factors like lapse rate and asymptotic‬
‭criterion determine alternative values for HR‬‭adj max‬ ‭and FAR‬‭adj min‬‭, and thus arrive at an alternative‬
‭value for‬‭d’‬‭adj max‬‭.‬

‭MLE fitting of a psychometric function to‬‭d’‬

‭The general idea behind the following is to use fitted‬‭d’‬‭, in conjunction with empirical values for‬
‭the criterion‬‭c‬‭, to compute a “fitted” HR and FAR‬‭at each level of‬‭x‬‭. These can then be used to‬
‭assign probabilities to single trial outcomes, which in turn can be used to compute likelihood in‬
‭the general way described above. This approach is conceptually similar to the MLE estimation‬
‭of meta-‬‭d’‬‭, in which fitted meta-‬‭d’‬‭is used in conjunction‬‭with the empirical‬‭c’‬‭to assign‬
‭single-trial probabilities to type 2 outcomes‬‭(Maniscalco and Lau, 2014, 2012)(Maniscalco and‬
‭Lau, 2014, 2012)‬‭.‬

‭A psychometric function ψ with parameters θ fitted to‬‭d’‬‭data gives fitted values at each level of‬
‭x‬‭via‬

‭𝑑‬‭'‬
‭𝑥‬

= ψ ‭𝑥‬; ‭ ‬‭θ‬( ) ‭(S10)‬

‭We may consider these as being related to “fitted” HRs and FARs via‬

‭𝑑‬‭'‬
‭𝑥‬

= ‭𝑧‬ ‭𝖧𝖱‬
‭𝑥‬( ) − ‭𝑧‬ ‭𝖥𝖠𝖱‬

‭𝑥‬( ) ‭(S11)‬

‭but this does not provide sufficient information for computing unique values for‬ ‭and‬ ‭.‬‭𝖧𝖱‬
‭𝑥‬

‭𝖥𝖠𝖱‬
‭𝑥‬

‭However, we can make progress by taking the empirically computed criteria‬ ‭as givens, where‬‭𝑐‬
‭𝑥‬

‭𝑐‬
‭𝑥‬

=− ‭1‬
‭2‬ ‭𝑧‬ ‭𝖧𝖱‬

‭𝑥‬( ) + ‭𝑧‬ ‭𝖥𝖠𝖱‬
‭𝑥‬( )( ) ‭(S12)‬

‭Using the empirical‬ ‭and‬ ‭, one can‬‭solve for the exact values of HR‬‭x‬ ‭and FAR‬‭x‬‭. If one‬‭𝑑‬‭'‬
‭𝑥‬

‭𝑐‬
‭𝑥‬

‭instead used the‬‭estimated‬ ‭and the empirical‬ ‭in this calculation, one would compute‬‭𝑑‬‭'‬
‭𝑥‬

‭𝑐‬
‭𝑥‬

‭estimated‬‭values of‬ ‭and‬ ‭whose degree of error depends on the error in‬ ‭. These‬‭𝖧𝖱‬
‭𝑥‬

‭𝖥𝖠𝖱‬
‭𝑥‬

‭𝑑‬‭'‬
‭𝑥‬

‭estimated‬ ‭and‬ ‭are given‬‭by‬‭𝖧𝖱‬
‭𝑥‬

‭𝖥𝖠𝖱‬
‭𝑥‬
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‭𝖧𝖱‬
‭𝑥‬

= ‭Φ‬
‭𝑑‬‭'‬

‭𝑥‬

‭2‬ − ‭𝑐‬
‭𝑥‬( )

‭𝖥𝖠𝖱‬
‭𝑥‬

= ‭Φ‬ −
‭𝑑‬‭'‬

‭𝑥‬

‭2‬ − ‭𝑐‬
‭𝑥‬( ) ‭(S13)‬

‭where Φ is the standard normal CDF. These imply estimated miss rates (‬ ‭) and correct‬‭𝖬𝖱‬
‭𝑥‬

‭rejection rates (‬ ‭):‬‭𝖢𝖱𝖱‬
‭𝑥‬

‭𝖬𝖱‬
‭𝑥‬

= ‭1‬ − ‭𝖧𝖱‬
‭𝑥‬

‭𝖢𝖱𝖱‬
‭𝑥‬

= ‭1‬ − ‭𝖥𝖠𝖱‬
‭𝑥‬

‭(S14)‬

‭For convenience of notation, we can re-express these as probabilities for every kind of stimulus‬
‭classification outcome as‬

‭𝑝‬
‭θ‬‭ ‬‭𝑟‬=‭"‬‭𝑆‬‭2"|‬‭𝑠‬=‭𝑆‬‭2‬,‭𝑥‬

= ‭𝖧𝖱‬
‭𝑥‬

‭𝑝‬
‭θ‬‭ ‬‭𝑟‬=‭"𝖲2"|‬‭𝑠‬=‭𝖲1‬,‭𝑥‬

= ‭𝖥𝖠𝖱‬
‭𝑥‬

‭𝑝‬
‭θ‬‭ ‬‭𝑟‬=‭"𝖲1"|‬‭𝑠‬=‭𝖲2‬,‭𝑥‬

= ‭𝖬𝖱‬
‭𝑥‬

‭𝑝‬
‭θ‬‭ ‬‭𝑟‬=‭"𝖲1"|‬‭𝑠‬=‭𝖲1‬,‭ ‬‭ ‬‭𝑥‬

= ‭𝖢𝖱𝖱‬
‭𝑥‬

‭(S15)‬

‭and then write the likelihood function as‬

log ‭𝐿‬ θ‭ ‬‭|‬‭ ‬‭𝖽𝖺𝗍𝖺‬( )‭ ‬ =
‭𝑟‬,‭𝑠‬,‭𝑥‬
∑ ‭𝑛‬

‭𝑟‬‭|‬‭𝑠‬,‭𝑥‬
log ‭𝑝‬

‭θ‬‭ ‬‭𝑟‬‭|‬‭𝑠‬,‭𝑥‬ ‭(S16)‬

‭where‬ ‭is shorthand for the trial count‬ ‭,‬‭r‬‭can take on‬‭𝑛‬
‭𝑟‬‭|‬‭𝑠‬,‭𝑥‬

‭𝑛‬ ‭𝗋𝖾𝗌𝗉‬ = ‭𝑟‬‭ ‬‭|‬‭ ‬‭𝗌𝗍𝗂𝗆‬ = ‭𝑠‬‭ ‬‭∩‬‭ ‬‭ ‬‭𝗌𝗍𝗋𝖾𝗇𝗀𝗍𝗁‬‭ ‬ = ‭ ‬‭𝑥‬( )

‭values “S1” and “S2”, and‬‭s‬‭can take on values S1‬‭and S2.‬

‭Thus, by considering estimated‬‭d’‬‭alongside empirical‬‭c‬‭, we are able to assign probabilities to‬
‭each trial outcome and use those trial outcome probabilities to compute likelihood in the usual‬
‭way. We can interpret the MLE fit derived from this approach as telling us what psychometric‬
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‭function parameters θ, taken in conjunction with the empirical values of‬ ‭, maximize the‬‭𝑐‬
‭𝑥‬

‭likelihood of the subject’s stimulus classification responses for each stimulus type.‬

‭An alternative way of thinking about this approach is that the full parameter set for the model is‬

θ = α, β, γ, ω, ‭𝒄‬{ }‭ ‬ ‭(S17)‬

‭where‬ ‭are parameters of the scaled psychometric‬‭function determining each‬ ‭, and‬α, β, γ, ω ‭𝑑‬‭'‬
‭𝑥‬

‭𝒄‬

‭is a vector of modeled‬ ‭values. This parameter‬‭set enables calculation of each‬ ‭.‬‭𝑐‬
‭𝑥‬

‭𝑝‬
‭θ‬‭ ‬‭𝑟‬‭|‬‭𝑠‬,‭𝑥‬

‭However, since we are only interested in estimating the psychometric function of‬‭d’‬‭, we‬

‭constrain all elements of‬ ‭to be equal to their‬‭corresponding empirical‬ ‭values, leaving only‬‭𝒄‬ ‭𝑐‬
‭𝑥‬

‭as free parameters in the model fit. The‬‭ML estimate of the full model is then given by‬α, β, γ, ω
‭solving‬

θ*‭ ‬ = arg
θ

max ‭𝐿‬ θ‭ ‬‭|‬‭ ‬‭𝖽𝖺𝗍𝖺‬( ), ‭ ‬‭ ‬‭𝗌𝗎𝖻𝗃𝖾𝖼𝗍‬‭ ‬‭𝗍𝗈‬: ∀‭𝑥‬‭ ‬‭ ‬‭𝑐‬
‭𝑥‬

= ‭𝑐‬
‭𝑥‬ ‭(S18)‬

‭and taking‬ ‭ϵ θ* to be the ML parameter estimates‬‭of the psychometric function for‬‭d’‬‭.‬α, β, γ, ω

‭Another approach to fitting‬‭d’‬‭might involve directly‬‭fitting the‬ ‭and‬ ‭data using‬‭the usual‬‭𝖧𝖱‬
‭𝑥‬

‭𝖥𝖠𝖱‬
‭𝑥‬

‭MLE fitting method for probabilistic variables, and using these fitted curves to compute a fitted‬‭d’‬
‭curve using the standard equation for‬‭d’‬‭. However,‬‭in our experience this method is ineffective‬
‭and gives very unstable and problematic fits to the‬‭d’‬‭data, necessitating the alternative‬
‭approach described above.‬

‭meta-‬‭d’‬
‭Let us first consider the approach to MLE fitting of meta-‬‭d’‬‭for a single set of data‬‭(Maniscalco‬
‭and Lau, 2014, 2012)(Maniscalco and Lau, 2014, 2012)‬‭, and then adapt this approach for use‬
‭with fitting a psychometric function.‬

‭MLE fitting of meta-‬‭d’‬

‭We characterize the likelihood of type 2 responses (e.g. confidence ratings) conditional on type‬
‭1 outcomes (correct and incorrect “S1” and “S2” responses) as‬
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log ‭𝐿‬ θ‭ ‬‭|‬‭ ‬‭𝖽𝖺𝗍𝖺‬( )‭ ‬ =
‭𝑦‬,‭𝑠‬,‭𝑟‬
∑ ‭𝑛‬

‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬
log ‭𝑝‬

‭θ‬‭ ‬‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬ ‭(S19)‬

‭where‬ ‭is shorthand for the trial count‬ ‭,‬‭y‬‭can‬‭take on‬‭𝑛‬
‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬

‭𝑛‬ ‭𝖼𝗈𝗇𝖿‬ = ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝗌𝗍𝗂𝗆‬ = ‭𝑠‬‭ ‬‭∩‬‭ ‬‭𝗋𝖾𝗌𝗉‬ = ‭𝑟‬( )

‭values in {1, 2, …,‬ ‭} where‬ ‭is the number of available ratings on the confidence‬‭𝑁‬
‭𝗋𝖺𝗍𝗂𝗇𝗀𝗌‬

‭𝑁‬
‭𝗋𝖺𝗍𝗂𝗇𝗀𝗌‬

‭rating scale,‬ ‭r‬‭can take on values “S1” and “S2”,‬‭and‬‭s‬‭can take on values S1 and S2.‬

‭are type 2 response probabilities according‬‭to some model parameterized with θ, where‬‭𝑝‬
‭θ‬‭ ‬‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬

‭the subscript notation is the same as that of‬ ‭. These probabilities correspond to points on‬‭𝑛‬
‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬

‭the type 2 ROC curves for “S1” and “S2” responses and thus characterize type 2 sensitivity.‬
‭In the meta-‬‭d’‬‭model, the type 2 probabilities‬ ‭are characterized in terms of a type 1 SDT‬‭𝑝‬

‭θ‬‭ ‬‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬

‭model whose parameters are‬

θ‭ ‬ = ‭𝗆𝖾𝗍𝖺–‬‭𝑑‬‭'‬, ‭𝗆𝖾𝗍𝖺–‬‭𝑐‬, ‭𝗆𝖾𝗍𝖺–‬‭𝒄‬
‭2‬,‭"𝖲1"‬

, ‭𝗆𝖾𝗍𝖺–‬‭𝒄‬
‭2‬,‭"𝖲2"‬{ } ‭(S20)‬

‭where the “meta-” prefix emphasizes that these type 1 SDT model parameters are used to‬
‭characterize type 2 probabilities. Meta-‬‭d’‬‭and meta-‬‭c‬‭correspond to‬‭d'‬‭and‬‭c‬‭in the standard SDT‬
‭model, and‬ ‭and‬ ‭are vectors of type 2 criteria for producing type 2‬‭𝗆𝖾𝗍𝖺–‬‭𝒄‬

‭2‬,‭"𝖲1"‬
‭𝗆𝖾𝗍𝖺–‬‭𝒄‬

‭2‬,‭"𝖲2"‬

‭responses, each of length‬ ‭.‬‭Taken together, these parameters determine all‬ ‭via‬‭𝑁‬
‭𝗋𝖺𝗍𝗂𝗇𝗀𝗌‬

− ‭1‬ ‭𝑝‬
‭θ‬‭ ‬‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬

‭standard probability calculations using the SDT model.‬

‭In fitting this model to the data, we constrain meta-‬‭c‬‭such that it yields a relative criterion in the‬
‭meta-‬‭d’‬‭model equal to the empirical‬‭c’‬‭computed from‬‭the data. The relative criterion is defined‬
‭as‬ ‭, and so this constraint amounts to setting‬ ‭. We also constrain‬‭𝑐‬‭'‬ = ‭𝑐‬‭/‬‭𝑑‬‭'‬ ‭𝗆𝖾𝗍𝖺–‬‭𝑐‬ = ‭𝑐‬‭'‬‭ ‬‭∙‬‭ ‬‭𝗆𝖾𝗍𝖺–‬‭𝑑‬‭'‬‭ ‬
‭the type 1 and type 2 criteria so that they stand in the appropriate ordinal relationships to each‬
‭other on the SDT decision axis, as summarized by a Boolean function‬ ‭which returns 1 if‬‭𝐶‬ θ( )
‭the criteria are in appropriate ordinal relationships and 0 otherwise.‬

‭Fitting the meta-‬‭d’‬‭model thus consists in solving‬‭the optimization problem‬

θ*‭ ‬ = arg
θ

max ‭𝐿‬ θ‭ ‬‭|‬‭ ‬‭𝖽𝖺𝗍𝖺‬( ), ‭ ‬‭ ‬‭𝗌𝗎𝖻𝗃𝖾𝖼𝗍‬‭ ‬‭𝗍𝗈‬: ‭𝗆𝖾𝗍𝖺–‬‭𝑐‬‭'‬ = ‭𝑐‬‭'‬, ‭ ‬‭𝐶‬(θ) = ‭1‬
‭(S21)‬

‭and taking meta-‬‭d’‬‭ϵ θ* to be the ML estimate of meta-‬‭d’‬‭.‬

‭Thus, the meta-‬‭d’‬‭model characterizes the type 2 sensitivity‬‭exhibited by a set of type 2 data in‬
‭terms of what‬‭d’‬‭value in a standard SDT model would‬‭maximize the likelihood of those type 2‬
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‭data, provided that the model’s relative criterion‬‭c’‬‭is identical to the‬‭c’‬‭computed from the same‬
‭data set.‬

‭For more details on these methods, please see‬‭(Maniscalco and Lau, 2014)(Maniscalco and‬
‭Lau, 2014)‬‭.‬

‭MLE fitting of a psychometric function to meta-‬‭d’‬

‭The approach for MLE fitting of meta-‬‭d’‬‭described‬‭above can be straightforwardly adapted to an‬
‭MLE fit of a psychometric function describing meta-‬‭d’‬‭as a function of stimulus strength‬‭x‬‭.‬
‭Essentially, this adaptation consists in performing the same fit of the meta-‬‭d’‬‭model to every‬
‭level of‬‭x‬‭as described above, with the exception‬‭that each‬ ‭is determined not via‬‭𝗆𝖾𝗍𝖺–‬‭𝑑‬‭'‬

‭𝑥‬
‭𝑁‬

‭𝑥‬

‭separate meta-‬‭d’‬‭parameters, but rather via the four‬‭parameters of a fitted psychometric‬
‭function which determine meta-‬‭d’‬‭at each level of‬‭x‬‭.‬

‭First, we expand the likelihood function to take into account type 2 responses conditional on‬
‭type 1 outcomes at each level of‬‭x‬‭:‬

log ‭𝐿‬ θ‭ ‬‭|‬‭ ‬‭𝖽𝖺𝗍𝖺‬( )‭ ‬ =
‭𝑦‬,‭𝑠‬,‭𝑟‬,‭𝑥‬

∑ ‭𝑛‬
‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬,‭𝑥‬

log ‭𝑝‬
‭θ‬‭ ‬‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬,‭𝑥‬ ‭(S22)‬

‭where‬ ‭is shorthand for the trial count‬ ‭,‬‭𝑛‬
‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬,‭𝑥‬

‭𝑛‬ ‭𝖼𝗈𝗇𝖿‬ = ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝗌𝗍𝗂𝗆‬ = ‭𝑠‬‭ ‬‭∩‬‭ ‬‭𝗋𝖾𝗌𝗉‬ = ‭𝑟‬‭ ‬‭∩‬‭ ‬‭𝗌𝗍𝗋𝖾𝗇𝗀𝗍𝗁‬‭ ‬ = ‭ ‬‭𝑥‬( )

‭and‬ ‭employs similar notation.‬‭𝑝‬
‭θ‬‭ ‬‭𝑦‬‭|‬‭𝑠‬,‭𝑟‬,‭𝑥‬

‭Second, we expand the model such that it is characterized by parameters‬

θ‭ ‬ = α, β, γ, ω, ‭𝗆𝖾𝗍𝖺–𝒄‬, ‭𝗆𝖾𝗍𝖺–‬‭𝒄‬
‭2‬,‭"𝖲1"‬

, ‭𝗆𝖾𝗍𝖺–‬‭𝒄‬
‭2‬,‭"𝖲2"‬{ } ‭(S23)‬

‭where‬ ‭is a vector of length‬ ‭containing values of meta-‬‭c‬‭at every level of‬‭x‬‭,‬‭𝗆𝖾𝗍𝖺–𝒄‬ ‭𝑁‬
‭𝑥‬

‭𝗆𝖾𝗍𝖺–‬‭𝒄‬
‭2‬,‭"𝖲1"‬

‭and‬ ‭are matrices of size‬‭(‬ ‭,‬ ‭) containing type‬‭2 criteria for “S1” and “S2”‬‭𝗆𝖾𝗍𝖺–‬‭𝒄‬
‭2‬,‭"𝖲2"‬

‭𝑁‬
‭𝑥‬

‭𝑁‬
‭𝗋𝖺𝗍𝗂𝗇𝗀𝗌‬

− ‭1‬

‭responses at every level of‬‭x‬‭, and‬ ‭are parameters‬‭of the psychometric function for‬α, β, γ, ω
‭meta-‬‭d’‬‭such that‬

‭𝗆𝖾𝗍𝖺–‬‭𝑑‬‭'‬
‭𝑥‬

= ψ ‭𝑥‬; ‭ ‬α, β, γ, ω( ) ‭(S24)‬

‭At every level of‬‭x‬‭we apply the same constraints‬‭as in the standard meta-‬‭d’‬‭model fit, such that‬
‭and‬ ‭for all‬‭x‬‭, where‬ ‭indicates the subset of the parameters‬‭in θ‬‭𝗆𝖾𝗍𝖺–‬‭𝑐‬‭'‬

‭𝑥‬
= ‭𝑐‬‭'‬

‭𝑥‬
‭𝐶‬ θ

‭𝑥‬( ) = ‭1‬ θ
‭𝑥‬
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‭applying to the specified value of‬‭x‬‭. This latter constraint ensures that within each level of‬‭x‬‭, the‬
‭criteria of the meta-‬‭d’‬‭model stand in appropriate‬‭ordinal relationships.‬

‭Fitting the meta-‬‭d’‬‭model for a psychometric function‬‭thus consists in solving the optimization‬
‭problem‬

θ*‭ ‬ = arg
θ

max ‭𝐿‬ θ‭ ‬‭|‬‭ ‬‭𝖽𝖺𝗍𝖺‬( ), ‭ ‬‭ ‬‭𝗌𝗎𝖻𝗃𝖾𝖼𝗍‬‭ ‬‭𝗍𝗈‬: ∀‭𝑥‬‭ ‬‭𝗆𝖾𝗍𝖺–‬‭𝑐‬‭'‬
‭𝑥‬

= ‭𝑐‬‭'‬
‭𝑥‬
, ‭ ‬‭𝐶‬ θ

‭𝑥‬( ) = ‭1‬
‭(S25)‬

‭and taking‬ ‭to be the ML parameter estimates of the psychometric function for‬α, β, γ, ω‭ ‬‭ ‬ϵ‭ ‬‭ ‬θ*

‭meta-‬‭d’‬‭.‬

‭Mean rating‬
‭In experiments using a rating scale (e.g. as of confidence, visibility, etc.) with three or more‬
‭rating options, it may be of interest to fit a psychometric function to the mean rating across‬
‭levels of stimulus strength‬‭x‬‭. Below we demonstrate‬‭that the psychometric function for mean‬
‭rating can be expressed as a simple sum of psychometric functions fitted to cumulative rating‬
‭probabilities of the form‬ ‭, each‬‭of which can be fitted with standard MLE methods‬‭𝑝‬(‭𝗋𝖺𝗍𝗂𝗇𝗀‬ ≥ ‭𝑦‬)
‭for probabilistic variables.‬

‭Expressing mean rating in terms of cumulative rating probabilities‬

‭Consider a rating scale consisting of options {1, 2, …,‬ ‭} where‬ ‭(or‬ ‭for short) is‬‭𝑁‬
‭𝗋𝖺𝗍𝗂𝗇𝗀𝗌‬

‭𝑁‬
‭𝗋𝖺𝗍𝗂𝗇𝗀𝗌‬

‭𝑁‬
‭𝑅‬

‭the number of available ratings on the rating scale, and‬ ‭. Let‬‭R‬‭be a random variable for‬‭𝑁‬
‭𝑅‬

≥ ‭2‬

‭the rating observed on any given trial. Then the mean rating across trials is given by‬

‭𝑅‬=
‭𝑦‬=‭1‬

‭𝑁‬
‭𝑅‬

∑ ‭𝑦‬‭ ‬‭∙‬‭ ‬‭𝑃‬ ‭𝑅‬ = ‭𝑦‬( ) ‭(S26)‬

‭The‬ ‭terms can be expressed in terms of cumulative‬‭probabilities via‬‭𝑃‬ ‭𝑅‬ = ‭𝑦‬( )

‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭1‬ − ‭𝑃‬ ‭𝑅‬ ≥ ‭2‬( )‭ ‬, ‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭𝑦‬ = ‭1‬

‭𝑃‬ ‭𝑅‬ = ‭𝑦‬( ) = ‭ ‬ ‭ ‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬( )‭ ‬ − ‭ ‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬ + ‭1‬( )‭ ‬, ‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭2‬ ≤ ‭𝑦‬ ≤ ‭ ‬‭𝑁‬
‭𝑅‬

− ‭1‬

‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑁‬
‭𝑅‬( )‭ ‬, ‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬‭𝑦‬ = ‭𝑁‬

‭𝑅‬

‭(S27)‬

‭48‬



‭Combining Eqs. S26 and S27 and simplifying, we can express mean rating in terms of‬
‭cumulative probabilities as‬

‭𝑅‬= ‭1‬ − ‭𝑃‬ ‭𝑅‬ ≥ ‭2‬( ) +
‭𝑦‬=‭2‬

‭𝑁‬
‭𝑅‬

−‭1‬

∑ ‭𝑦‬‭ ‬‭∙‬‭ ‬ ‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬( )‭ ‬ − ‭ ‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬ + ‭1‬( )( )
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦
‭ ‬ + ‭𝑁‬

‭𝑅‬
‭ ‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑁‬

‭𝑅‬( )

‭𝑅‬= ‭1‬ +
‭𝑦‬=‭2‬

‭𝑁‬
‭𝑅‬

∑ ‭𝑦‬‭ ‬‭∙‬‭ ‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬( ) − ‭𝑦‬ − ‭1‬( )‭ ‬‭∙‬‭ ‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬( )

‭𝑅‬= ‭1‬ +
‭𝑦‬=‭2‬

‭𝑁‬
‭𝑅‬

∑ ‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬( ) ‭(S28)‬

‭Thus, mean rating across all trials can be expressed as the sum of the cumulative probabilities‬
‭over all values‬‭y‬‭in the rating scale.‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬( )

‭MLE fitting of a psychometric function to mean rating‬

‭Now consider an experiment using several levels of stimulus strength‬‭x‬‭. We can compute the‬
‭probability that ratings reach some threshold value‬‭y‬‭at each level of‬‭x‬‭as‬ ‭, and‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝑥‬( )
‭since each individual trial has a Boolean outcome for whether its rating reaches threshold or‬
‭not, the‬ ‭data can be fitted by a psychometric‬‭function with standard MLE methods‬‭𝑃‬ ‭𝑅‬ ≥ ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝑥‬( )
‭for probabilistic variables as‬

‭𝑃‬
‭𝑦‬,‭𝑥‬

(‭𝑅‬ ≥ ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝑥‬) = ψ ‭𝑥‬; θ
‭𝑦‬( ) ‭(S29)‬

‭By the above logic, we may then express a psychometric function for mean rating‬ ‭in terms of‬‭𝑅‬
‭𝑥‬

‭the sum of fitted psychometric functions for‬ ‭at each level of‬ ‭as‬‭𝑃‬
‭𝑦‬,‭𝑥‬

‭𝑦‬ ≥ ‭2‬

‭𝑅‬
‭𝑥‬
‭ ‬ = ‭1‬ +

‭𝑦‬=‭2‬

‭𝑁‬
‭𝑅‬

∑ ‭𝑃‬
‭𝑦‬,‭𝑥‬

(‭𝑅‬ ≥ ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝑥‬)

= ‭1‬ +
‭𝑦‬=‭2‬

‭𝑁‬
‭𝑅‬

∑ ψ ‭𝑥‬; θ
‭𝑦‬( )‭ ‬‭ ‬‭ ‬‭ ‬‭ ‬

‭(S30)‬
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‭Because each‬ ‭is derived via MLE,‬ ‭gives an MLE fit to the mean rating data‬ ‭.‬‭𝑃‬
‭𝑦‬,‭𝑥‬

‭𝑅‬
‭𝑥‬

‭𝑅‬
‭𝑥‬

‭Note that due to the link between Eqs. S26 and S28, the MLE approach in Eq. S30 is equivalent‬

‭to fitting the rating probabilities‬ ‭for all but one value of y (since the estimated‬‭𝑃‬
‭𝑦‬,‭𝑥‬

‭𝑅‬ = ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝑥‬( )

‭rating probability for the final y can be inferred from the others). This is intuitive, as a trial-level‬
‭MLE fit to mean rating requires assigning a probability to the rating outcome on each trial, which‬

‭in turn requires estimation of each‬ ‭. However, for the sake of fitting psychometric‬‭𝑃‬
‭𝑦‬,‭𝑥‬

‭𝑅‬ = ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝑥‬( )

‭functions, it is more convenient to work with Eq. S30 and estimate‬ ‭since these‬‭𝑃‬
‭𝑦‬,‭𝑥‬

‭𝑅‬ ≥ ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝑥‬( )

‭functions will tend to be monotonically increasing with‬‭x‬‭, in agreement with the behavior of‬

‭typical psychometric functions, whereas this is not the case for‬ ‭.‬‭𝑃‬
‭𝑦‬,‭𝑥‬

‭𝑅‬ = ‭𝑦‬‭ ‬‭|‬‭ ‬‭𝑥‬( )

‭Nonparametric RPF AUC analysis: methodological considerations‬
‭As discussed in the main manuscript, there may be cases where it is desirable to estimate RPF‬
‭AUC nonparametrically. Here we discuss methodological considerations for this approach in‬
‭more detail.‬

‭Full interpolation‬
‭If neither‬‭P‬‭1‬ ‭nor‬‭P‬‭2‬ ‭data are fitted with parametric‬‭functions, then RPF AUC can be estimated‬
‭nonparametrically by summing the areas of the trapezoids formed by linear interpolation over‬
‭the plot of‬‭P‬‭2‬ ‭vs.‬‭P‬‭1‬‭. The RPF toolbox (‬‭https://github.com/CNClaboratory/RPF‬‭)‬‭performs this‬
‭interpolation with the‬‭interp1‬‭function of Matlab,‬‭which requires the input list of‬‭x‬‭-values to be‬
‭unique and sorted in ascending order. Thus, the following preprocessing of the data is‬
‭conducted:‬

‭1.‬ ‭The‬‭P‬‭1‬ ‭data is sorted in ascending order, with the‬‭P‬‭2‬ ‭data subject to the same‬
‭re-ordering such that all (‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data pairs remain‬‭intact.‬

‭2.‬ ‭For any‬‭P‬‭1‬ ‭value that occurs more than once, the corresponding‬‭(‬‭P‬‭1,‬‭i‬‭,‬‭P‬‭2,‬‭i‬‭) pairs are‬
‭replaced with a single (‬‭P’‬‭1‬‭,‬‭P’‬‭2‬‭) pair where‬‭P’‬‭1‬ ‭is‬‭the recurring‬‭P‬‭1‬ ‭value and‬‭P’‬‭2‬ ‭is the‬
‭average of the‬‭P‬‭2,‬‭i‬ ‭values.‬

‭Partial interpolation‬
‭Alternatively, it is possible to construct an RPF by fitting a psychometric function‬‭F‬‭1‬ ‭to‬‭P‬‭1‬ ‭data‬
‭and estimating the function‬‭F‬‭2‬ ‭of‬‭P‬‭2‬ ‭data by interpolation.‬‭This allows the standard computation‬
‭of the RPF as‬‭P‬‭2‬ ‭= F‬‭2‬‭(‬‭F‬‭1‬

‭-1‬‭(‬‭P‬‭1‬‭)), treating the interpolation‬‭of the‬‭P‬‭2‬ ‭data as the function‬‭F‬‭2‬‭.‬
‭However, it is in general not possible to interpolate‬‭P‬‭1‬ ‭and fit‬‭P‬‭2‬‭. In this case, the interpolated‬‭P‬‭1‬
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‭function will in general not be monotonic with‬‭x‬‭, which prevents computation of‬‭F‬‭1‬
‭-1‬‭(‬‭P‬‭1‬‭) since not‬

‭every‬‭P‬‭1‬ ‭value will map onto a unique‬‭x‬‭value.‬

‭Constraints on‬‭P‬‭1‬ ‭intervals, and possible expansions‬
‭Under full interpolation, since interpolation cannot extrapolate beyond the‬‭P‬‭1‬ ‭data, the widest‬
‭possible‬‭P‬‭1‬ ‭interval over which the RPF can be computed‬‭is the one defined by the minimum‬
‭and maximum values in the‬‭P‬‭1‬ ‭data. Under partial interpolation,‬‭although the fitted‬‭F‬‭1‬ ‭function‬
‭can extrapolate beyond the‬‭P‬‭1‬ ‭data, the interpolated‬‭P‬‭2‬ ‭data are still constrained to range over‬
‭the minimum and maximum‬‭x‬‭values used in the experiment‬‭(call them‬‭x‬‭expt min‬ ‭and‬‭x‬‭expt max‬‭).‬
‭Thus, the RPF can only be computed over the fitted‬‭P‬‭1‬ ‭interval corresponding to this‬
‭experimentally constrained‬‭x‬‭interval, i.e. over the‬‭P‬‭1‬ ‭interval [‬‭F‬‭1‬‭(‬‭x‬‭expt min‬‭),‬‭F‬‭1‬‭(‬‭x‬‭expt max‬‭)].‬

‭However, in some cases it may be reasonable to assume theoretical (‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data pairs‬
‭corresponding to the minimum and/or maximum possible values for the variables in question,‬
‭which can then be used to expand the‬‭P‬‭1‬ ‭interval beyond‬‭the constraints imposed by the data.‬
‭For instance, if‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭correspond to‬‭d’‬‭and meta-‬‭d’‬‭,‬‭it is reasonable to assume that when‬
‭stimulus strength is minimal (‬‭x‬‭= 0), it must also‬‭be the case that‬‭P‬‭1‬ ‭= P‬‭2‬ ‭= 0 since both‬‭d’‬‭and‬
‭meta-‬‭d’‬‭have chance values of 0. In this case, the‬‭lower bound of the empirically constrained‬‭P‬‭1‬

‭interval for the fully interpolated RPF could be extended by appending the theoretical (0, 0) data‬
‭pair to the empirical (‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data. Similarly, if‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭correspond to p(correct) and p(high‬
‭rating), theoretical or empirical considerations might justify the assumption that when‬‭x‬‭takes on‬
‭its maximal value (or an arbitrarily high value if there is no maximum), both p(correct) and p(high‬
‭rating) should be expected to be near their ceiling values of 1, in which case the upper bound of‬
‭the empirically constrained‬‭P‬‭1‬ ‭interval for the fully‬‭interpolated RPF could be extended by‬
‭appending the theoretical (1, 1) data pair to the empirical (‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data.‬

‭Such assumptions are similar to the assumptions one might sometimes make in setting‬‭a priori‬
‭values for‬ ‭(chance rate) and/or‬ ‭(lapse rate)‬‭in fitting psychometric functions. A similar‬γ λ
‭approach is used in the nonparametric estimation of area under the ROC curve in the‬
‭calculation of‬‭A‬‭g‬ ‭(Pollack and Hsieh, 1969)(Pollack and Hsieh, 1969)‬‭, in which the theoretical‬
‭(false alarm rate, hit rate) data points (0, 0) and (1, 1) are appended to the empirical data to‬
‭allow calculation of the area over all possible values of false alarm rate.‬

‭In certain cases, experiments may include presentation of stimuli at‬‭x‬‭= 0 (e.g., zero contrast‬
‭grating stimuli or equivalently, grating-absent stimuli). For such stimuli, accuracy measures such‬
‭as p(correct) and‬‭d’‬‭are undefined if they pertain‬‭to discrimination of stimulus features (e.g.‬
‭grating tilt), since there is no such feature present to begin with. However, other measures such‬
‭as p(high confidence) and reaction time can still have defined values for‬‭x‬‭= 0 stimuli. If‬
‭constructing an RPF using one of each type of variable – say, p(correct) for‬‭P‬‭1‬ ‭and p(high‬
‭confidence) for‬‭P‬‭2‬ ‭– then the variable that is defined‬‭at‬‭x‬‭= 0 (e.g. p(high confidence)) will have‬
‭one more data point than the one that is not (e.g. p(correct)). However, since the variable that is‬
‭undefined at‬‭x‬‭= 0 must be so by virtue of being an‬‭accuracy measure, it should also have a‬
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‭natural chance value that can be assumed to hold at‬‭x‬‭= 0 (e.g. 0.5 for p(correct) in a‬
‭two-alternative task). (Although accuracy measures are undefined at‬‭x‬‭= 0, assuming a chance‬
‭value here can be justified by considering this to be the limiting value that the accuracy measure‬
‭approaches as‬‭x‬‭becomes arbitrarily close to 0.) Thus,‬‭in such cases it is natural to append a‬
‭theoretical chance value for the accuracy measure at‬‭x‬‭= 0 (e.g. p(correct)) and use this in‬
‭conjunction with the empirical data collected at‬‭x‬‭= 0 for the other variable (e.g. p(high‬
‭confidence)) to even out the number of data points in‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭and form a new (‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data‬
‭pair that extends the lower bound of the‬‭P‬‭1‬ ‭interval‬‭to its minimal possible value corresponding‬
‭to‬‭x‬‭= 0.‬

‭Nonparametric RPF AUC analysis: statistical considerations‬
‭As discussed in the main manuscript, there may be cases where it is desirable to estimate RPF‬
‭AUC nonparametrically. However, this invites the question of whether nonparametric methods‬
‭are as effective as parametric methods in estimating the true RPF AUC value. Here we‬
‭investigate this question using computational simulations.‬

‭Our overall approach is to repeatedly simulate data from a diverse range of known RPFs, and‬
‭then use the simulated data to estimate RPF AUC with the methods of fitting, partial‬
‭interpolation, and full interpolation, as described in the previous section. We can then compare‬
‭the estimated AUCs from each method to the known true AUC to assess how well each method‬
‭performs. We also investigate the influence of trial counts and‬‭P‬‭1‬ ‭interval size on the results.‬

‭We take our simulated task to be a simple binary classification of a stimulus whose strength can‬
‭range over [0, 1] (e.g. discriminate whether a grating of contrast‬‭x‬‭is tilting left or right) along‬
‭with a binary confidence rating (low or high). We assume the task has equal stimulus priors. We‬
‭take the dependent variables for RPF analysis,‬‭P‬‭1‬‭and‬‭P‬‭2‬‭, to be p(correct) and p(high rating),‬
‭respectively.‬

‭We began by defining four sets of “true” Weibull functions (see Eq. 1 in the main text) for each‬
‭of‬‭F‬‭1‬ ‭and‬‭F‬‭2‬‭. We defined the parameters‬ ‭of the four‬‭F‬‭1‬ ‭functions by taking every‬‭θ‬ = (α, β, γ, λ)‭ ‬
‭possible combination of‬ ‭and‬ ‭, with‬ ‭and‬ ‭for each‬α

‭1‬
‭ ‬‭∈‬‭ ‬{‭0‬. ‭3‬, ‭0‬. ‭7‬} β

‭1‬
‭ ‬‭∈‬‭ ‬{‭1‬, ‭3‬} γ

‭1‬
= ‭0‬. ‭5‬ λ

‭1‬
= ‭0‬. ‭01‬

‭function. Similarly, we defined‬ ‭for the four‬‭F‬‭2‬ ‭functions by taking every possible combination of‬‭θ‬
‭and‬ ‭, with‬ ‭and‬ ‭for each function. This provided‬‭a‬α

‭2‬
‭ ‬‭∈‬‭ ‬{‭0‬. ‭3‬, ‭0‬. ‭7‬} β

‭2‬
‭ ‬‭∈‬‭ ‬{‭1‬, ‭3‬} γ

‭2‬
= ‭0‬. ‭1‬ λ

‭2‬
= ‭0‬. ‭1‬

‭diverse set of functional forms for both‬‭F‬‭1‬‭(‬‭x‬‭;θ) and‬‭F‬‭2‬‭(‬‭x‬‭;θ) (‬‭Figure S1‬‭). Each‬‭F‬‭1‬‭(‬‭x‬‭;θ) and‬‭F‬‭2‬‭(‬‭x‬‭;θ)‬
‭function from these sets can then be combined to define an RPF, leading to 16 RPFs in total‬
‭that exhibit a wide range of behaviors (‬‭Figure S2‬‭).‬

‭52‬



‭Figure S1. Generating functions for‬‭F‬‭1‬‭(‬‭x‬‭) and‬‭F‬‭2‬‭(‬‭x‬‭)‬‭in the simulations.‬
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‭Figure S2. RPFs constructed from the generating functions for‬‭F‬‭1‬‭(‬‭x‬‭) and‬‭F‬‭2‬‭(‬‭x‬‭) in the simulations.‬

‭For each simulated experiment, we defined 6 values of‬‭x‬‭evenly spaced between 0.1 and 0.9,‬
‭i.e.‬ ‭. For‬‭each value of‬‭x‬‭, we simulated accuracy on each‬‭𝑥‬‭ ‬‭∈‬‭ ‬{‭0‬. ‭1‬, ‭ ‬‭0‬. ‭26‬, ‭ ‬‭0‬. ‭42‬, ‭ ‬‭0‬. ‭58‬, ‭ ‬‭0‬. ‭74‬, ‭ ‬‭0‬. ‭9‬}
‭trial by setting accuracy to 1 if a pseudorandom number drawn from the standard uniform‬
‭distribution was less than‬‭F‬‭1‬‭(‬‭x‬‭;θ), and 0 otherwise.‬‭Similarly, we simulated rating on each trial by‬
‭setting rating to 2 if a pseudorandom number drawn from the standard uniform distribution was‬
‭less than‬‭F‬‭2‬‭(‬‭x‬‭;θ), and 1 otherwise. Different simulations‬‭used different numbers of trials per level‬
‭of‬‭x‬‭, with values‬ ‭.‬‭𝑁‬

‭𝗍𝗋𝗂𝖺𝗅𝗌‬‭ ‬‭𝗉𝖾𝗋‬‭ ‬‭𝗑‬
‭ ‬‭∈‬‭ ‬{‭30‬, ‭ ‬‭50‬, ‭ ‬‭100‬, ‭ ‬‭200‬, ‭ ‬‭500‬, ‭ ‬‭1000‬}

‭We then used the simulated data to estimate the RPF using three methods:‬
‭1.‬ ‭fitting‬‭: fit Weibull functions to both‬‭P‬‭1‬ ‭and‬‭P‬‭2‬ ‭using‬‭MLE; use these fits to construct the‬

‭fitted RPF‬
‭2.‬ ‭partial interpolation‬‭: fit a Weibull function to‬‭P‬‭1‬ ‭using MLE, and use linear interpolation‬

‭on‬‭P‬‭2‬‭; use these to constructed the partially interpolated‬‭RPF‬
‭3.‬ ‭full interpolation‬‭: perform linear interpolation directly‬‭on the plot of‬‭P‬‭2‬ ‭vs.‬‭P‬‭1‬ ‭to‬

‭construct the fully interpolated RPF‬
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‭In fitting‬‭P‬‭1‬ ‭(i.e. p(correct)), we constrained‬ ‭to the chance value of 0.5, and allowed‬ ‭,‬ ‭,‬γ
‭1‬

α
‭1‬

β
‭1‬

‭and‬ ‭to be free parameters. In fitting‬‭P‬‭2‬ ‭(i.e.‬‭p(high rating)), we allowed all of‬ ‭,‬ ‭,‬ ‭and‬λ
‭1‬

α
‭2‬

β
‭2‬

γ
‭2‬

λ
‭2‬

‭to be free parameters. We performed these fits with the RPF toolbox‬
‭(‬‭https://github.com/CNClaboratory/RPF‬‭), which also‬‭uses functions sourced from the‬
‭Palamedes toolbox version 1.11.11‬‭(Prins and Kingdom, 2018)(Prins and Kingdom,‬‭2018)‬‭.‬

‭For each simulated data set, we computed true RPF AUC and the estimated RPF AUC for each‬
‭method over three p(correct) intervals:‬

‭1.‬ ‭maximum p(correct) interval over the presented x values‬
‭2.‬ ‭p(correct) interval = [0.7, 0.8]‬
‭3.‬ ‭p(correct) interval = [0.74, 0.76]‬

‭We consider the maximum possible p(correct) interval‬‭over the presented x values‬‭because full‬
‭interpolation cannot extrapolate beyond the empirical‬‭P‬‭1‬ ‭data‬‭6‬‭, which itself is limited to the range‬
‭of presented‬‭x‬‭values. Thus, we constrain‬‭all‬‭analyses‬‭for the maximum p(correct) interval to‬
‭operate over the presented‬‭x‬‭values to make for a‬‭fair comparison among all methods.‬

‭The maximum p(correct) interval over the presented‬‭x‬‭values depends on the case being‬
‭considered. For the true RPF, this p(correct) interval is given by the true values of‬‭𝑃‬

‭1‬
= ‭𝐹‬

‭1‬
‭𝑥‬; ‭θ‬( )

‭occurring at the minimum and maximum presented‬‭x‬‭values,‬‭i.e.‬ ‭. Under‬‭𝐹‬
‭1‬

‭𝑥‬
‭𝗆𝗂𝗇‬

; ‭θ‬( ), ‭ ‬‭𝐹‬
‭1‬

‭𝑥‬
‭𝗆𝖺𝗑‬

; ‭θ‬( )[ ]
‭fitting or partial interpolation, wherein p(correct) is fitted by‬ ‭, the p(correct)‬‭interval‬‭𝑃‬

‭1‬
= ‭𝐹‬

‭1‬
‭𝑥‬; ‭θ‬( )

‭is given by the fitted‬ ‭values at the minimum‬‭and maximum presented values of‬‭x‬‭, i.e.‬‭𝑃‬
‭1‬

‭.‬‭Under full interpolation, the p(correct) interval is given by the minimum‬‭𝐹‬
‭1‬

‭𝑥‬
‭𝗆𝗂𝗇‬

; ‭θ‬( ), ‭ ‬‭𝐹‬
‭1‬

‭𝑥‬
‭𝗆𝖺𝗑‬

; ‭θ‬( )⎡⎢⎣
⎤⎥⎦

‭and maximum empirical‬‭P‬‭1‬ ‭values, i.e.‬ ‭.‬‭𝑃‬
‭1‬‭ ‬‭𝗆𝗂𝗇‬

, ‭ ‬‭𝑃‬
‭1‬‭ ‬‭𝗆𝖺𝗑‬[ ]

‭For each of these cases, we computed RPF AUC over each interval via numerical integration‬
‭using the methods contained in the RPF toolbox (‬‭https://github.com/CNClaboratory/RPF‬‭).‬

‭Thus, in total, we simulated data from 16 RPFs for 6 different values of number of trials per level‬
‭of‬‭x‬‭, for a total of 96 settings for simulated experiments.‬‭For each simulation setting, we‬
‭estimated RPF AUC and‬ ‭over 3 p(correct)‬‭intervals with the 3 methods of fitting, partial‬‭𝑃‬

‭2‬

‭interpolation, and full interpolation. For each simulation setting, we ran 1000 simulated‬
‭experiments.‬

‭6‬ ‭In the previous section, we discussed cases where the‬‭P‬‭1‬ ‭interval under interpolation can be expanded‬
‭by appending theoretical (‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data pairs. For‬‭the present simulation, although we can safely assume‬
‭p(correct) = 0.5 at‬‭x‬‭= 0, there is no theoretical‬‭basis for assuming an‬‭a priori‬‭value for p(high rating)‬‭at‬‭x‬
‭= 0, nor for assuming values for either variable at‬‭x‬‭= 1. Thus, in this case interpolation of the RPF‬‭is‬
‭limited to the empirical‬‭P‬‭1‬ ‭data.‬
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‭Occasionally it occurred that for a simulated data set, the analysis could not proceed due to‬
‭invalid AUC data occurring for at least one method applied to at least one p(correct) interval.‬
‭This could occur due the MLE fit to either‬‭F‬‭1‬ ‭or‬‭F‬‭2‬ ‭data producing invalid parameter estimates,‬
‭such as infinite slope, due to noise in the data. It could also occur due to at least one RPF‬
‭estimation method not having a maximal p(correct) window that fully spanned the pre-specified‬
‭p(correct) interval of [0.7, 0.8]. This could occur e.g. if the maximum empirical p(correct) value in‬
‭the simulated data was below 0.8, or if the maximum fitted p(correct) value at‬‭x‬‭max‬ ‭was below‬
‭0.8. In these instances, the simulated data were discarded to ensure that for all data being‬
‭analyzed, all methods had valid AUC results for all p(correct) intervals. When data was‬
‭discarded in this way, we conducted extra simulation repetitions to ensure that every simulation‬
‭setting wound up with 1000 repetitions containing fully valid data.‬‭Table S1‬‭summarizes the‬
‭proportion of total repetitions that had fully valid data for each trial count setting.‬

‭𝑁‬
‭𝗍𝗋𝗂𝖺𝗅𝗌‬‭ ‬‭𝗉𝖾𝗋‬‭ ‬‭𝗑‬

‭30‬ ‭50‬ ‭100‬ ‭200‬ ‭500‬ ‭1000‬

‭p(valid)‬ ‭0.8903‬ ‭0.9271‬ ‭0.9637‬ ‭0.9912‬ ‭0.9996‬ ‭1‬

‭Table S1. Proportion of simulation repetitions containing fully valid data for each level of‬ ‭.‬‭𝑁‬
‭𝗍𝗋𝗂𝖺𝗅𝗌‬‭ ‬‭𝗉𝖾𝗋‬‭ ‬‭𝗑‬

‭In‬‭Figures S3 - S7‬‭, we show that over different‬‭P‬‭1‬ ‭intervals and RPF parameter settings, partial‬
‭interpolation and full interpolation exhibit comparable overall performance to MLE fitting with‬
‭regards to retrieving the true AUC, with some methods performing slightly better in some‬
‭contexts than others. We observed similar AUC results in simulations using the‬‭P‬‭1‬ ‭interval [0.74,‬
‭0.76], and similar‬ ‭results across all simulation‬‭settings (data not shown).‬‭𝑃‬

‭2‬
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‭Figure S3. Accuracy and precision of RPF AUC estimation are robust to estimation method over‬
‭maximal‬‭P‬‭1‬ ‭intervals.‬‭RPF AUCs estimated from simulated‬‭data using methods ff ~ fitted, fi ~ partial‬
‭interpolation, ii ~ full interpolation, and compared to true AUC computed from known generating RPF, for‬

‭= 100‬‭. Error bars show‬‭standard deviation across simulations.‬‭𝑁‬
‭𝗍𝗋𝗂𝖺𝗅𝗌‬‭ ‬‭𝗉𝖾𝗋‬‭ ‬‭𝗑‬
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‭Figure S4. Accuracy and precision of RPF AUC estimation are robust to estimation method over‬
‭narrower‬‭P‬‭1‬ ‭intervals.‬‭RPF AUCs estimated from simulated‬‭data using methods ff ~ fitted, fi ~ partial‬
‭interpolation, ii ~ full interpolation, and compared to true AUC computed from known generating RPF, for‬

‭= 100‬‭. Error bars show‬‭standard deviation across simulations.‬‭𝑁‬
‭𝗍𝗋𝗂𝖺𝗅𝗌‬‭ ‬‭𝗉𝖾𝗋‬‭ ‬‭𝗑‬
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‭Figure S5. Mean absolute error in AUC estimation across all parameter settings for‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭as a‬
‭function of fitting method, number of trials, and‬‭P‬‭1‬ ‭interval.‬‭ff ~ fitted, fi ~ partial interpolation,‬‭ii ~ full‬
‭interpolation. The‬‭N‬‭trials per x‬ ‭x‬‭-axis is displayed‬‭on a log‬‭10‬ ‭scale, and numbers next to each data point‬‭show‬
‭the corresponding‬‭N‬‭trials per x‬ ‭for clarity. Error‬‭bars show standard error of the mean across simulations.‬
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‭Figure S6. Mean absolute error in AUC estimation for the max p(correct) interval, over each‬
‭permutation of parameter settings for‬‭F‬‭1‬ ‭and‬‭F‬‭2‬‭, as‬‭a function of fitting method and number of‬
‭trials.‬‭ff ~ fitted, fi ~ partial interpolation, ii‬‭~ full interpolation. The‬‭N‬‭trials per x‬ ‭x‬‭-axis is‬‭displayed on a log‬‭10‬

‭scale. Error bars show standard error of the mean across simulations.‬
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‭Figure S7. Mean absolute error in AUC estimation for the [0.7, 0.8] p(correct) interval, over each‬
‭permutation of parameter settings for‬‭F‬‭1‬ ‭and‬‭F‬‭2‬‭, as‬‭a function of fitting method and number of‬
‭trials.‬‭ff ~ fitted, fi ~ partial interpolation, ii‬‭~ full interpolation. The‬‭N‬‭trials per x‬ ‭x‬‭-axis is‬‭displayed on a log‬‭10‬

‭scale. Error bars show standard error of the mean across simulations.‬

‭Detailed methods for empirical case study‬

‭Participants‬
‭27 University of California Riverside students (19 female, 8 male, 26 right-handed, mean age =‬
‭20.6 (SD = 3.1)) provided written informed consent to participate in the main study. All‬
‭participants had normal or corrected-to-normal vision and normal or corrected-to-normal‬
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‭hearing, and were compensated at a rate of $10/hour for their participation. All study procedures‬
‭were approved by the University of California Riverside Institutional Review Board.‬

‭Prior to the main group-level analysis, data from individual participants were inspected for‬
‭quality. Data from six participants were excluded from the main analysis due to having‬
‭performance at or near chance levels across all motion coherence levels (n=3), having‬
‭completely flat (n=1) or excessively noisy (n=1) confidence vs d’ curves, and using a single‬
‭confidence rating on almost all trials (n=1). Therefore, 21 participants were included in the main‬
‭analyses reported here.‬

‭Stimuli & equipment‬
‭All stimuli were presented on a CRT monitor (NEC MultiSync FE2111SB-BK, width 39.6 cm,‬
‭height 29.7 cm) with refresh rate 75 Hz. A random dot kinematogram (RDK) filling the entire‬
‭screen (width x height = 43.2 x 33.1 degrees of visual angle (deg)) was presented continuously‬
‭throughout every block of trials. Dots were black on a white background, with dot size = 0.1 deg,‬
‭speed = 6 deg/sec, and lifetime = 67 ms (5 frames). When a dot’s lifetime expired, it was‬
‭removed from the screen and replaced with a new dot having a full lifetime and randomly‬
‭determined location and motion direction. At the start of each block, dots were initialized with‬
‭uniformly distributed “age,” such that on every frame refresh of the screen, one-fifth of the dots‬
‭expired and were respawned. Dots that moved outside the bounds of the screen continued their‬
‭motion trajectory from the opposite side of the screen.‬

‭Dot Density took on one of three possible values (Low = 1 dot/deg‬‭2‬‭, Medium = 3 dots/deg‬‭2‬‭, High‬
‭= 9 dots/deg‬‭2‬‭), and was varied either across blocks‬‭(Trial Structure: Blocked) or across trials‬
‭within a block (Trial Structure: Interleaved). When Dot Density decreased from trial N to trial‬
‭N+1, a randomly selected portion of the dots were deleted in order to achieve the appropriate‬
‭density. When Dot Density increased, an appropriate number of new dots were spawned with‬
‭uniformly distributed age and randomly selected location and motion direction.‬

‭A fixation cross (width = 0.35 deg) was presented in the center of the screen. Color of the‬
‭fixation cross changed depending on trial state (see below). Participants were instructed to‬
‭maintain fixation on the fixation cross throughout each block. To prevent dots from visually‬
‭interfering with the fixation cross, any dots whose locations fell inside a small circular region in‬
‭the center of the screen (diameter = 2 deg) were not displayed.‬

‭The critical stimulus event occurring on every trial was the occurrence of 533 ms of coherent‬
‭downward motion in a circular region of the screen (diameter = 8 deg) whose center was‬
‭located 7 deg to the left or right of fixation, which we will call the “region of coherence.” Motion‬
‭coherence was drawn from one of seven possible values spaced evenly between 10% and‬
‭80%, i.e. [10, 21.67, 33.33, 45, 56.67, 68.33, 80]%.‬

‭Coherent motion was created by assigning downward motion to all dots spawned with initial‬
‭locations falling within the region of coherence with probability p(motion coherence) for a period‬
‭lasting 493 ms (37 frames). Thus, onset and offset of motion coherence was temporally‬
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‭smoothed due to being yoked to dot respawning, which occurred for one-fifth of the dots on‬
‭every frame. In total, motion coherence linearly ramped up during the first 53 ms (4 frames) of‬
‭motion coherence, remained at full motion coherence for the next 427 ms (32 frames), and then‬
‭linearly ramped down during the final 53 ms (4 frames). Additionally, since motion direction for‬
‭every dot was constant throughout its lifetime, there were no sharp perceptual edges around the‬
‭perimeter of the region of coherence due to abrupt changes in dot motion direction as dots‬
‭entered and exited the region.‬

‭Procedure‬
‭Participants sat approximately 50 cm from the screen with their chins in a chinrest. Each trial‬
‭began with presentation of full-field random dot motion for a pre-stimulus period lasting 1 - 3 s.‬
‭Pre-stimulus duration was drawn randomly from an exponential distribution on each trial such‬
‭that the hazard rate was roughly held constant; this meant that during the pre-stimulus period,‬
‭the amount of time elapsed so far was made to be uninformative about whether the target‬
‭stimulus was about to occur. During this period the fixation cross was red in order to cue the‬
‭subject to be ready to detect impending coherent motion. Subsequently, the fixation cross‬
‭turned black and coherent downward motion appeared in one of the two circular regions of‬
‭coherence (533 ms). The region of coherence was equally likely to appear on either the left or‬
‭right side of fixation.‬

‭After stimulus offset, participants were given three seconds to report the side in which they saw‬
‭the downward movement (by pressing the 1 or 2 key) and how confident they were in their‬
‭judgment on a scale of 1 to 4 (using the 7 8 9 0 keys). On trials where participants could not‬
‭clearly make out the location of coherent motion, they were encouraged to enter a response‬
‭anyway by making a random guess. To provide feedback on registry of keyboard input, the‬
‭fixation cross turned gray after entry of the left / right decision and disappeared after entry of‬
‭confidence. The full 3 s of the response period played out even on trials where participants‬
‭entered their perceptual decision and confidence rating prior to the expiration of the 3 s time‬
‭limit. A schematic of trial structure is shown in‬‭Figure 4A‬‭in the main text.‬

‭Blocked versus Interleaved Trial Structure design‬
‭Participants underwent two trial-order conditions in which Dot Density was either presented‬
‭pseudorandomly across trials in an‬‭Interleaved‬‭design,‬‭or was‬‭Blocked‬‭by Dot Density. In the‬
‭Interleaved type trials, the density level on each trial was pseudorandomly drawn from any of‬
‭the three density levels (Low, Medium, or High); in the Blocked type trials, all trials within a block‬
‭had the same density. In both Trial Structure conditions, within each block of trials all coherence‬
‭levels were presented in pseudorandom order.‬

‭The order of the Blocked versus Interleaved Trial Structure conditions was counterbalanced‬
‭across two days of testing, such that half of participants underwent the Blocked condition on‬
‭Day 1 and the Interleaved condition on Day 2, and the other half underwent the Interleaved‬
‭condition first. Trials in both the Interleaved and Blocked conditions were presented across nine‬
‭blocks of trials per day with 84 trials in each block (12 trials per coherence level in each block).‬
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‭In the Blocked trials, Dot Density was pseudorandomly assigned to block number, subject to the‬
‭constraints that (1) blocks 1-3, 4-6, and 7-9 contained one each of the Low, Medium, and High‬
‭Dot Density conditions, and (2) density could not be identical across consecutive blocks.‬

‭Overall, participants completed 756 trials total in each of the Blocked and Interleaved Trial‬
‭Structure conditions, with 36 trials for each combination of Trial Structure (Blocked, Interleaved),‬
‭Dot Density (Low, Medium, High), and motion coherence (7 levels in total, spaced evenly‬
‭between 10% and 80% coherence). Each day of testing lasted about an hour and 15 minutes,‬
‭such that participants underwent about 2.5 hours of testing in total. Day 2 occurred between 1 -‬
‭3 days after Day 1. A schematic of Trial Structure (Blocked, Interleaved) is shown in‬‭Figure 4B‬
‭in the main text.‬

‭Prior to testing on each day, participants performed at least one block of practice trials (and‬
‭possibly more depending on the discretion of the experimenter, who monitored participant‬
‭performance during practice to ensure adequate understanding and performance of the task).‬
‭During practice, participants engaged in the same task as the main task, but also received‬
‭trial-by-trial auditory feedback regarding the correctness of their responses (high tone for‬
‭correct, low tone for incorrect). Practice blocks contained 12 trials in which the three levels of‬
‭Dot Density were pseudorandomly interleaved (even on Blocked condition days), with motion‬
‭coherence set to 100%. During the entirety of the first 6 trials of a practice block, red circles‬
‭were shown around the edges of the left and right regions of coherence in order to familiarize‬
‭the participant with what regions of the screen could potentially contain coherent motion. The‬
‭practice was designed to allow participants to become comfortable with the task and response‬
‭options, and to ensure they understood the task and key mappings for choices and confidence‬
‭ratings.‬

‭All behavioral procedures were programmed in PsychToolbox and implemented on a MacBook‬
‭Pro with OSX Version 10.9.5 running Matlab r2013b.‬

‭Detailed fitting of‬‭P‬‭1‬ ‭(‬‭d’‬‭)‬
‭For fitting‬‭d’‬‭as a function of‬‭x‬‭(in RPF analysis,‬‭this would be for fitting‬‭P‬‭1‬‭) we follow the‬
‭approach described above to define‬‭d’‬‭as a function‬‭of stimulus strength‬‭x‬‭via the scaled Weibull‬
‭distribution. To fit‬‭d’‬‭to the present empirical dataset,‬‭we set constraints to be‬ ‭(since at‬γ

‭𝑛‬
= ‭0‬

‭chance performance, d’ = 0) and‬ ‭= maximum‬‭possible‬‭d’‬‭value achievable. This maximum‬‭⍵‬
‭𝑛‬

‭achievable value is controlled by the number of trials present in the dataset at each stimulus‬
‭level‬‭x‬‭, combined with choices about how to avoid‬‭hit and false alarm rates being 1 or 0,‬
‭respectively. Specifically, we must make decisions about what is called ‘padding’ to make the‬
‭maximum possible hit rate (HR) less than 1, with the amount less than 1 depending on the‬
‭number of trials in the condition of interest. Similarly, we want the minimum possible cell-padded‬
‭false alarm rate (FAR) to be greater than 0. The‬‭d’‬‭that is maximum for a given cell padding is‬
‭defined as z(max HR possible with cell padding) - z(min FAR possible with cell padding).‬
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‭We accomplish this goal by ‘padding’ the number of responses in a given response category‬
‭such that no response category contains zero responses. Response categories are defined as‬
‭the combination of a type 1 response (e.g. left or right) and confidence rating (here, a rating‬
‭from 1-4). Thus, for each possible stimulus presented (here: coherent motion‬‭presented‬‭on the‬
‭left or right side of the screen), we count the number of “reported right” and “reported left”‬
‭responses, separated by the confidence level that was also reported.‬

‭Algorithmically, in our RPF toolbox (‬‭https://github.com/CNClaboratory/RPF‬‭)‬‭d’‬‭is calculated‬
‭through reliance on the scripts developed by Maniscalco and Lau‬‭(Maniscalco and Lau, 2014,‬
‭2012)(Maniscalco and Lau, 2014, 2012)‬‭, which separates response data into two arrays‬
‭containing these response categories. Concretely, these two matrices‬‭nR_S1‬‭and‬‭nR_S2‬‭are‬
‭vectors containing the total number of responses in each response category, conditional on‬
‭presentation of S1 (e.g., ‘stimulus on the left’) and S2 (e.g., ‘stimulus on the right’). The following‬
‭description is copied from the relevant section of the RPF toolbox for clarity:‬

‭% e.g. if nR_S1 = [100 50 20 10 5 1], then when stimulus S1 was‬
‭% presented, the subject had the following response counts:‬
‭% responded S1, rating=3 : 100 times‬
‭% responded S1, rating=2 : 50 times‬
‭% responded S1, rating=1 : 20 times‬
‭% responded S2, rating=1 : 10 times‬
‭% responded S2, rating=2 : 5 times‬
‭% responded S2, rating=3 : 1 time‬
‭%‬
‭% The ordering of response / rating counts for S2 should be the same‬
‭as it is for S1. e.g. if nR_S2 = [3 7 8 12 27 89], then when stimulus‬
‭S2 was‬
‭% presented, the subject had the following response counts:‬
‭% responded S1, rating=3 : 3 times‬
‭% responded S1, rating=2 : 7 times‬
‭% responded S1, rating=1 : 8 times‬
‭% responded S2, rating=1 : 12 times‬
‭% responded S2, rating=2 : 27 times‬
‭% responded S2, rating=3 : 89 times‬

‭Here, each response count cell in‬‭nR_S1‬‭and‬‭nR_S2‬‭for each level of condition and‬‭x‬‭is padded‬
‭with a value 1/(2*nRatings) – i.e., this value is added to all response categories – where‬
‭nRatings refers to the number of available confidence ratings in the experiment (here, 4). For‬
‭example, using this number of ratings,‬‭nR_S1 = [100‬‭50 20 10 5 1]‬‭becomes‬ ‭nR_S1 =‬
‭[100.125 50.125 20.125 10.125 5.125 1.125]‬‭. (Interested‬‭readers can also refer to‬
‭our toolbox README, specifically the RPF_guide(‘info’) section entitled “Fitting‬‭d’‬‭and meta-‬‭d’‬‭”‬
‭and RPF_guide(‘padInfo’), for more detailed information).‬
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‭With this approach, the present data the max cell padded‬‭d’‬‭thus achieved is 3.8759, so we‬
‭constrain‬ ‭to be 3.8759 for all conditions. Thus only‬ ‭and‬ ‭are free parameters fitted to the‬‭⍵‬

‭𝑛‬
α

‭𝑛‬
β

‭𝑛‬

‭data, which we fit separately for each condition.‬

‭Detailed fitting of‬‭P‬‭2‬ ‭(mean confidence rating and‬‭meta-‬‭d’‬‭)‬
‭To fit mean confidence as a function of‬‭x‬‭(for‬‭P‬‭2‬‭),‬‭we again used the scaled Weibull distribution‬
‭for mean confidence as described above to fit mean confidence as a function of stimulus‬
‭strength‬‭x‬‭. In these fits, no constraints were placed‬‭on any of the four psychometric function‬
‭parameters. To fit metacognitive sensitivity (meta-‬‭d’‬‭)‬‭as a function of stimulus strength‬‭x‬‭(also‬
‭for‬‭P‬‭2‬‭), we again used the custom likelihood functions‬‭described above for the meta-‬‭d’‬‭scaled‬
‭Weibull. For each condition in this dataset, we constrained‬ ‭= 0 and‬ ‭= 3.8759 (as with the‬γ

‭𝑛‬
‭⍵‬

‭𝑛‬

‭fit for‬‭d’‬‭).‬

‭Notes about group fitting for plotting‬
‭In the main text, for illustrative purposes‬‭Figures‬‭5‬‭and‬‭6‬‭show MLE fits of the RPF to the group‬
‭data concatenated across all subjects into one single large dataset containing all trials for all‬
‭individual subjects. This concatenation required an assumption about cell padding for the‬
‭purposes of avoiding HR = 1 and FAR = 0 (as described above) to avoid underestimation of the‬
‭effect of cell padding choices on the group fit relative to the effect on single-subject fits.‬
‭Specifically, because we have 21 subjects, the group data has 21 times the amount of trials of‬
‭any individual subject’s dataset. We therefore multiply the cell padding factor in the group fits by‬
‭21, such that the cell padding for the group fit would be the same fraction of total trial counts as‬
‭it was for each individual subject. This plotting approach therefore gives a better representation‬
‭of the group average over each individual subject analysis. We remind the reader that all‬
‭statistical measures were derived from single-subject fits to each individual condition for each‬
‭individual subject, so these choices affect the visual presentation of the group data for‬
‭illustrative purposes only and have no effect on the statistical analyses and conclusions‬
‭presented in the main text.‬

‭RPF toolbox‬
‭The RPF analysis approach described here can be implemented in Matlab using the free, open‬
‭source RPF toolbox available at‬‭https://github.com/CNClaboratory/RPF‬‭.‬‭The toolbox supports a‬
‭full analysis pipeline from raw trial-level data for a single subject to RPF analysis results and‬
‭plots for that subject’s data. It is designed to allow for an easy, out-of-the-box analysis pipeline‬
‭using only a few high-level functions while implicitly handling many of the subtleties and‬
‭complexities of RPF analysis under the hood, while still allowing for complete control and‬
‭customizability of the finer details of the analysis where desired.‬

‭The general workflow in the toolbox consists in first defining the dependent variables one‬
‭wishes to assign to the functions‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭and specifying‬‭any further details of the analysis‬

‭66‬

https://github.com/CNClaboratory/RPF


‭pertaining to e.g. psychometric function fitting or interpolation, computing the dependent‬
‭variables, and defining the properties of the independent variable‬‭x‬‭. Most settings have sensible‬
‭default values which are automatically set when unspecified, allowing the user to focus on‬
‭explicitly specifying the handful of settings that are most relevant to their use case.‬

‭The analysis settings for‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭are stored in‬‭separate user-defined‬‭info‬‭structs. From‬
‭there, the toolbox handles all details of performing the analysis in a few high-level functions:‬
‭RPF_get_F‬‭to conduct fitting or interpolation for‬‭F‬‭1‬ ‭and‬‭F‬‭2‬‭,‬‭RPF_get_R‬‭to conduct RPF‬
‭analysis, and‬‭RPF_plot‬‭to plot the results. Analysis‬‭results are stored in structs‬‭F1‬‭,‬‭F2‬‭, and‬‭R‬‭,‬
‭and these structs are used by the toolbox to analyze, query, and visualize the data at a high‬
‭level of abstraction. Analysis is completely modular in the sense that any analysis settings for‬
‭F1‬‭can be used with any analysis settings for‬‭F2‬‭in‬‭the RPF analysis.‬

‭Computing dependent variables from trial-level data‬
‭Using the user-defined settings in‬‭F.info‬‭, and provided‬‭with an appropriately formatted‬
‭trial-level data set, the toolbox conducts data analysis and stores the result in the‬‭F.data‬
‭struct. Data are assumed to come from a task in which for every trial, one of two stimulus‬
‭classes S1 or S2 is presented and the subject attempts to discern the presented stimulus class.‬
‭Additional data such as confidence rating or reaction time may also be included.‬

‭Dependent variables‬
‭Built-in data analysis is supported for any of the following dependent variables (DVs):‬

‭●‬ ‭p(correct)‬
‭●‬ ‭d’‬
‭●‬ ‭p(response) (e.g. p(“yes”) in a detection task)‬
‭●‬ ‭p(high confidence rating)‬
‭●‬ ‭mean confidence‬
‭●‬ ‭meta‬‭-d’‬
‭●‬ ‭type 2 AUC (i.e. area under the type 2 ROC curve)‬
‭●‬ ‭reaction time (RT)‬

‭Each DV is computed as a function of‬‭x‬‭and condition‬‭for subsequent RPF analysis. Additional‬
‭information pertaining to analysis details and subsequent fitting or interpolation is also provided.‬

‭Response-specific analysis‬
‭If desired, the toolbox can calculate response-specific performance, in which the DV is‬
‭computed only for a specified response type. For instance, one can define the DV to be meta-‬‭d’‬
‭for “yes” responses in a detection task, or p(correct) for “right” responses in a tilt discrimination‬
‭task. Response-specific analysis is available for all DVs except‬‭d’‬‭(due to being undefined) and‬
‭p(response) (due to being trivial).‬
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‭Analysis of detection vs discrimination tasks‬
‭For DVs related to SDT and receiver operating characteristic (ROC) analysis –‬‭d’‬‭, meta-‬‭d’‬‭, and‬
‭type 2 AUC – calculation of the DV as a function of‬‭x‬‭differs for detection and discrimination‬
‭tasks. In detection tasks, the S1 stimulus occurs at‬‭x‬‭’s minimal value and the S2 stimulus occurs‬
‭for all greater values of‬‭x‬‭(e.g. for detecting a‬‭contrast-defined grating, the S1 “stimulus absent”‬
‭case occurs at‬‭x‬‭= 0 and the S2 “stimulus present”‬‭cases occur at each level of‬‭x‬‭> 0). In‬
‭discrimination tasks, the S1 and S2 stimuli occur at each level of‬‭x‬‭(e.g. for discriminating the tilt‬
‭of contrast-defined gratings, S1 “left tilt” and S2 “right tilt” stimuli occur at each level of‬‭x‬‭> 0,‬‭but‬
‭are undefined at‬‭x‬‭= 0). For SDT and ROC related DVs,‬‭the toolbox automatically detects task‬
‭structure from the trial-level data and adjusts its data formats and DV calculations accordingly.‬

‭Custom data analysis‬
‭If trial-level data is unavailable, or if the user wishes to analyze some other DV, it is possible to‬
‭manually define the‬‭F.data‬‭struct. Provided that it‬‭is formatted in the correct way (as can be‬
‭ascertained by consulting the toolbox documentation in‬‭RPF_guide‬‭), the full analysis pipeline‬
‭can proceed using the manually defined‬‭F.data‬‭struct.‬

‭Fitting or interpolating the data‬
‭Using the settings defined in‬‭F.info‬‭and the data‬‭analysis in‬‭F.data‬‭, the toolbox conducts‬
‭psychometric function fitting or interpolation and stores the result in the‬‭F.fit‬‭struct.‬

‭Psychometric functions‬
‭The following psychometric functions for fitting probabilistic DVs are available in the RPF‬
‭toolbox via the Palamedes toolbox‬‭(Prins and Kingdom, 2018)(Prins and Kingdom,‬‭2018)‬‭:‬

‭●‬ ‭Weibull‬
‭●‬ ‭Gumbel‬
‭●‬ ‭Quick‬
‭●‬ ‭log-Quick‬
‭●‬ ‭Logistic‬
‭●‬ ‭Cumulative Normal‬
‭●‬ ‭HyperbolicSecant‬

‭These standard psychometric functions are appropriate for fitting probabilistic DVs such as‬
‭p(correct), p(response), and p(high confidence), but not for fitting non-probabilistic DVs such as‬
‭d’‬‭, meta-‬‭d’‬‭, type 2 AUC, and RT (see‬‭Supplemental‬‭Material‬‭, section “Maximum likelihood‬
‭estimation (MLE) fitting of non-probabilistic psychometric functions”). For fitting non-probabilistic‬
‭DVs, the RPF toolbox provides scaled psychometric function variants for some of the above:‬

‭●‬ ‭Scaled Weibull‬
‭●‬ ‭Scaled Gumbel‬
‭●‬ ‭Scaled Quick‬
‭●‬ ‭Scaled log-Quick‬
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‭The toolbox also supports fitting custom psychometric functions, as the code base accesses‬
‭psychometric functions via function handles defined in the‬‭F.info‬‭struct. For best compatibility‬
‭with the code, custom functions should have the form‬‭customFunction(params, x)‬‭where‬
‭params‬‭is an array containing values for‬‭α, β, γ,‬‭and λ (for a probabilistic psychometric function)‬
‭or ω (for a non-probabilistic psychometric function) and‬‭x‬‭is an array of‬‭x‬‭values at which to‬
‭evaluate the psychometric function. Functions using different parameter sets can still be used,‬
‭but would require more specialized custom code to ensure e.g. that the search grids used for‬
‭setting initial parameter values in the fitting functions are constructed in a reasonable way.‬

‭Transforms of‬‭x‬‭for psychometric functions‬
‭Different psychometric functions assume different properties for the independent variable‬‭x‬‭. For‬
‭instance, the Weibull function assumes that‬‭x‬‭is expressed‬‭on a ratio scale where‬‭x‬‭= 0 is the‬
‭minimum possible value, at which the stimulus is completely absent and performance is‬
‭completely at chance. Conversely, the Gumbel function assumes‬‭x‬‭has undergone a log‬‭10‬

‭transform. Thus, it is important to track what kind of‬‭x‬‭values are used with what kinds of‬
‭psychometric functions.‬

‭The RPF toolbox automatically manages all aspects of the analysis pertaining to the scale on‬
‭which‬‭x‬‭is expressed. All‬‭x‬‭values are assumed to‬‭be untransformed values expressed on a‬
‭ratio scale with a true zero, and any transformations of‬‭x‬‭are defined in a function‬‭xt_fn‬
‭appropriate to the psychometric function being used and stored in a separate variable‬‭xt‬‭to‬
‭make the scale of‬‭x‬‭explicit at all times. The‬‭xt‬‭variable is always used in psychometric function‬
‭calculations. In cases where no transform is necessary,‬‭xt‬‭is set equal to‬‭x‬‭.‬

‭Psychometric function fitting methods‬
‭The toolbox supports psychometric function fitting via maximizing likelihood (MLE) or minimizing‬
‭the sum of squared error (SSE).‬

‭When the errors of the fitted function to the DV at each level of‬‭x‬‭can be assumed to be‬
‭normally distributed with constant variance, minimizing SSE is equivalent to maximizing‬
‭likelihood. When this assumption does not hold, it is preferable to fit by maximizing the‬
‭likelihood of trial-level data according to some model of the probability of trial-level outcomes,‬
‭assuming such a model is available.‬

‭The toolbox supports standard methods for trial-level MLE fitting of probabilistic DVs as well as‬
‭the novel methods introduced in this manuscript for MLE fitting of‬‭d’‬‭, meta-‬‭d’‬‭, and mean rating‬
‭based on single-trial outcome probabilities. For more information, see‬‭Supplemental Material‬‭,‬
‭section “Maximum likelihood estimation (MLE) fitting of non-probabilistic psychometric‬
‭functions”.‬

‭The toolbox supports constraining selected parameters of the psychometric function fit to‬‭a‬
‭priori‬‭values, e.g. constraining the chance performance‬‭parameter γ to be 0.5 for p(correct).‬
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‭Future releases of the toolbox may implement more sophisticated options for parameter‬
‭constraint.‬

‭Interpolation‬
‭The RPF toolbox supports the interpolation approach to RPF analysis discussed in this‬
‭manuscript. Any interpolation method supported by the Matlab‬‭interp1‬‭function may be used.‬

‭The toolbox also supports options for appending‬‭a‬‭priori‬‭data to the calculated DVs to expand‬
‭the interpolation range for RPF analysis. For instance, in an RPF analysis of meta-‬‭d’‬‭vs‬‭d’‬‭, one‬
‭might choose to append the‬‭a priori‬‭data points‬‭d’‬‭= 0 and meta-‬‭d’‬‭= 0 at‬‭x‬‭= 0, reflecting that‬
‭performance at‬‭x‬‭= 0 must be at chance and similar‬‭in spirit to constraining‬‭γ = 0 in a‬
‭psychometric function fit. Appending these‬‭a priori‬‭data points would then expand the range of‬
‭d’‬‭values over which the RPF AUC can be computed.‬

‭The toolbox code base treats interpolation as a kind of “fit” using “parameters” corresponding to‬
‭the empirical values for‬‭x‬‭and the calculated DV at‬‭each level of‬‭x‬‭and condition, from which the‬
‭interpolated value at any‬‭x‬‭can be computed for all‬‭conditions. Thus, the code base treats‬‭F‬
‭structs in the same way regardless of whether they use fitting or interpolation. This allows‬
‭user-created code to seamlessly handle these rather different analysis techniques with a unitary‬
‭approach.‬

‭Conducting RPF analysis‬
‭Using the user-defined settings, data analysis results, and fitting results in‬‭F1‬‭and‬‭F2‬‭, the‬
‭toolbox conducts RPF analysis via the‬‭RPF_get_R‬‭function‬‭and stores the result in the‬‭R‬‭struct.‬

‭RPF AUC, average‬‭P‬‭2‬‭, and‬‭P‬‭1‬ ‭bounds‬
‭The toolbox estimates RPF AUC by computing‬‭P‬‭2‬ ‭=‬‭R‬‭(‬‭P‬‭1‬‭)‬‭for many finely spaced‬‭P‬‭1‬ ‭values‬
‭within a given set of‬‭P‬‭1‬ ‭bounds, and then using these‬‭(‬‭P‬‭1‬‭,‬‭P‬‭2‬‭) data pairs to conduct trapezoidal‬
‭numerical integration. The manner in which‬‭P‬‭2‬ ‭=‬‭R‬‭(‬‭P‬‭1‬‭)‬‭is computed depends on the context:‬

‭●‬ ‭If both‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭are Weibull psychometric functions,‬‭then‬‭P‬‭2‬ ‭=‬‭R‬‭(‬‭P‬‭1‬‭) is computed using‬
‭an analytical expression for the Weibull RPF (Eq. 5 in the‬‭main manuscript‬‭).‬

‭●‬ ‭If both‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭are interpolated, then‬‭P‬‭2‬ ‭=‬‭R‬‭(‬‭P‬‭1‬‭)‬‭is computed via direct interpolation on‬
‭the plot of‬‭P‬‭2‬ ‭vs‬‭P‬‭1‬‭, using the interpolation method‬‭specified for‬‭F‬‭2‬ ‭(see‬‭Supplemental‬
‭Material‬‭, section “Nonparametric RPF AUC analysis:‬‭methodological considerations”).‬

‭●‬ ‭Otherwise,‬‭P‬‭2‬ ‭=‬‭R‬‭(‬‭P‬‭1‬‭) is estimated by computing‬‭x‬‭=‬‭F‬‭1‬
‭-1‬‭(‬‭P‬‭1‬‭) and then‬‭P‬‭2‬ ‭=‬‭F‬‭2‬‭(‬‭x‬‭) (see Eq.‬

‭2 in the main manuscript), where‬‭F‬‭1‬ ‭is fitted and‬‭F‬‭2‬ ‭may or may not use interpolation.‬
‭Inversion of‬‭F‬‭1‬ ‭is conducted either analytically or‬‭numerically depending on the‬
‭psychometric function involved.‬

‭Thus, in most cases the toolbox estimates RPF AUC numerically, without needing to specify an‬
‭analytical expression for‬‭R‬‭.‬
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‭By default,‬‭R‬‭contains the values for AUC and‬ ‭over the maximum possible‬‭P‬‭1‬ ‭range spanned‬‭𝑃‬‾
‭2‬

‭across all conditions (see‬‭main manuscript‬‭, section‬‭“AUC approach: area under the RPF‬
‭curve”). It also contains the values for the lower and upper bounds of this maximum range and‬
‭information on their derivation, along with other supporting information pertaining to the RPF‬
‭analysis.‬

‭Subsequent analyses of AUC and‬ ‭for a narrower‬‭set of‬‭P‬‭1‬ ‭bounds can be conducted with the‬‭𝑃‬‾
‭2‬

‭RPF_AUC‬‭function.‬

‭Modularity‬
‭In the RPF toolbox, RPF analysis is completely modular in the sense that any analysis settings‬
‭for‬‭F1‬‭can be used along with any analysis settings‬‭for‬‭F2‬‭in the construction of‬‭R‬‭.‬

‭The toolbox also gracefully handles cases where one DV is undefined at the minimal value of‬‭x‬
‭(e.g. p(correct) for a tilt discrimination task at‬‭x‬‭= 0) and the other is not (e.g. p(high confidence)‬
‭at‬‭x‬‭= 0 for the same task), allowing for RPF analysis‬‭to be conducted in such cases according‬
‭to the default or user-defined settings despite the fact that there are different numbers of data‬
‭points for‬‭P‬‭1‬ ‭and‬‭P‬‭2‬‭.‬

‭Visualizing the analysis results‬
‭The RPF toolbox function‬‭RPF_plot‬‭provides a convenient‬‭way for analyzing the data and‬
‭analysis results contained in‬‭F1‬‭,‬‭F2‬‭, and‬‭R‬‭. In a‬‭single line of code, it can produce stand-alone‬
‭plots for the data and fits for‬‭F‬‭1‬‭,‬‭F‬‭2‬‭, and‬‭R‬‭, as‬‭well as a combined plot showing all three side by‬
‭side. The plots can be configured to display values for fitted‬‭F‬‭1‬ ‭and‬‭F‬‭2‬ ‭parameters and RPF‬
‭AUC,‬ ‭, and‬‭P‬‭1‬ ‭bounds. The appearance and‬‭contents of the plots are customizable using the‬‭𝑃‬‾

‭2‬

‭plotSettings‬‭struct.‬

‭Utilities‬
‭The toolbox also includes several other helpful utilities, including‬

‭●‬ ‭RPF_eval_F(F, x)‬‭: computes‬‭P = F‬‭(‬‭x‬‭) at each condition‬‭using the‬‭F‬‭struct‬
‭●‬ ‭RPF_eval_F_inv(F, P)‬‭: computes‬‭x‬‭=‬‭F‬‭-1‬‭(‬‭P‬‭1‬‭) at each‬‭condition using the‬‭F‬‭struct‬
‭●‬ ‭RPF_eval_R(R, P1):‬‭computes‬‭P‬‭2‬ ‭=‬‭R‬‭(‬‭P‬‭1‬‭) at each condition‬‭using the‬ ‭R‬‭struct‬
‭●‬ ‭RPF_structArray2fieldMatrix(F_or_R)‬‭:  reformats the‬‭F‬‭or‬‭R‬‭struct into a‬

‭different format that may be more convenient to use for some use cases‬
‭●‬ ‭RPF_get_PF_list‬‭and‬‭RPF_get_DV_list‬‭: get information‬‭on the psychometric‬

‭functions and dependent variables natively supported by the toolbox, organized by‬
‭various characteristics‬

‭●‬ ‭RPF_guide‬‭: comprehensive documentation on various‬‭aspects of the toolbox‬

‭71‬


