The relative psychometric function: a general
analysis framework for relating psychological
processes

Authors:

Brian Maniscalco'?, Olenka Graham Castaneda’?, Brian Odegaard?®, Jorge Morales*®,
Sivananda Rajananda?, Rachel N. Denison®, & Megan A. K. Peters'27:89.10

Affiliations:

1 Department of Cognitive Sciences, University of California Irvine

2 Department of Bioengineering, University of California Riverside

3 Department of Psychology, University of Florida

4 Department of Psychology, Northeastern University

5 Department of Philosophy and Religion, Northeastern University

6 Department of Psychological and Brain Sciences, Boston University

7 Department of Logic & Philosophy of Science, University of California Irvine

8 Center for the Theoretical Behavioral Sciences, University of California Irvine

9 Center for the Neurobiology of Learning and Memory, University of California Irvine

10 Program in Brain, Mind, & Consciousness, Canadian Institute for Advanced Research

Correspondence should be directed to:

Brian Maniscalco (bmaniscalco@gmail.com)
Megan A. K. Peters (megan.peters@uci.edu)



mailto:bmaniscalco@gmail.com
mailto:megan.peters@uci.edu

Abstract

Psychophysics seeks to quantitatively characterize relationships between objective properties of
the world and subjective properties of perception. However, traditional approaches investigate
psychophysical dependencies of perception on stimulus properties on a case by case basis
rather than seeking to identify quantitative relationships among these psychological processes
themselves. This latter goal is particularly important when the processes in question likely
depend on each other in some way, such as is the case for subjective experience and task
performance: typically, stronger physical stimuli lead to better performance and stronger
subjective experiences of clarity, vividness, or confidence. But is the relationship between
performance and subjective experience fixed, or can it vary, e.g. by task or attentional
demands? Such questions are key for better understanding psychological processes in general,
and subjective experience in particular. Here, we develop and showcase a new psychophysical
method designed to answer such questions: relative psychometric function (RPF) analysis,
which characterizes the nonlinear psychometric relationships between psychological processes
and how these relationships change under different circumstances (e.g. experimental
manipulations). We demonstrate the advantages of RPF analysis using a sample dataset in
which human subjects discriminated random dot kinematogram stimuli which varied in dot
motion coherence and overall dot density (dots per visual degree), and rated confidence. RPF
analysis revealed systematic changes in the relationship between performance and two
subjective measures (confidence and metacognitive sensitivity) due to dot density and task
design choices. While these empirical results are intriguing in their own right, they also show
how RPF analysis can reveal changes in quantitative relationships between any two
psychological measures: performance, vividness, clarity, reaction time, confidence, and more.
To encourage the scientific community to use RPF analysis on their data, we also present our
open-source RPF toolbox.

Keywords: psychophysics; psychometric functions; relative psychometric function; subjective
experience; quantitative psychology



Introduction

Arguably, the field of quantitative psychology began in the 1860s with Fechner’s Elemente der
Psychophysik — Elements of Psychophysics (Fechner, 1860; Fechner et al., 1966)(Fechner,
1860; Fechner et al., 1966). Fechner’s work set the foundation for what is now over 150 years of
concerted effort to map objective properties of the world to properties of the mind and brain.
Weber, Stevens, and others followed, seeking to establish the functional forms of these
relationships: that an observer’s “just noticeable difference” in discriminating two stimuli
depends on their absolute magnitude (Weber’s law), and that the perceived magnitude of a
stimulus (brightness, loudness, painfulness) exhibits an exponential relationship to the objective
stimulus magnitude (Stevens’ power law). These “introductory psychology course” concepts are
foundational pillars in the modern study of psychology.

The success of this framework underscores our deep motivation to build models of our minds,
but standard psychophysical approaches represent one-to-one mappings between the physical
and mental. Ultimately, we wish to understand not only how psychological processes relate to
properties of the world, but also how psychological processes relate to each other. For example,
increasing stimulus strength typically leads to faster, more accurate decisions, and increased
sense of confidence in those decisions. Likewise, the subjective sense of clarity may also
systematically vary with stimulus properties. But what is the relationship among all these
psychological variables, and is it fixed across different attentional states, tasks, or individuals?
While the relationship linking stimulus magnitude, discriminability, and absolute magnitude
estimation has recently been described (Zhou et al., 2024)(Zhou et al., 2024), what about the
relationships linking all these other psychological properties to each other?

Characterizing quantitative relationships between psychological variables is also especially
important when those relationships themselves may change depending on properties of the
world or other psychological processes. Perhaps nowhere is this more evident than in
psychophysical studies of subjective experience, where there are clear, empirically observed
relationships among stimulus intensity, task performance, and second-order judgments such as
confidence (judgment of whether a given discrimination decision is likely to be correct) or
subjective visibility or vividness (e.g., judgment of the clarity with which you saw a stimulus,
regardless of its objective properties). In most instances, these subjective aspects covary with
objective performance (Baranski and Petrusic, 1994)(Baranski and Petrusic, 1994): a higher
probability of correctly identifying a stimulus is typically accompanied by higher confidence,
higher vividness ratings, and a higher probability of reporting having seen the stimulus at all.
This means that any neural or psychophysical measures of subjective experience are easily
confounded by processes driving objective performance.

A standard approach to disentangling the neural correlates of subjective experience from those
underlying objective performance has been to control for these ‘performance confounds’
through either experimental or analytic approaches (Lau, 2008; Lau and Passingham, 2006;
Morales et al., 2022; Peters et al., 2017b)(Lau, 2008; Lau and Passingham, 2006; Morales et
al., 2022; Peters et al., 2017b). One popular approach is to create multiple experimental
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conditions in which performance (e.g., percent correct responses or the signal detection
theoretic metric d’) is held constant (e.g., through subject-specific staircasing) but subjective
reports (confidence, vividness, visibility, clarity) vary. However, this approach is not ideal for
several reasons. First, if performance is held constant across conditions, discovering a
difference in subjective reports despite no difference in objective performance might rely on a
statistical null effect, i.e. that the null hypothesis of equivalent performance could not be rejected
given the data available. This situation might arise simply from situations in which a chosen
manipulation had a smaller or noisier effect on performance than it did on subjective reports,
rather than no effect at all. Second, the effect of an experimental manipulation on a subjective
measure at a given matched performance level may strongly depend on the absolute level of
performance (see also (Morales et al., 2022)(Morales et al., 2022) for further discussion). Such
condition-driven differences in confidence at matched performance have been observed in
many different paradigms (Koizumi et al., 2015; Lau and Passingham, 2006; Maniscalco et al.,
2016; Odegaard et al., 2018a, 2018b; Rahnev et al., 2011; Rouault et al., 2018; Samaha et al.,
2016; Stolyarova et al., 2019)(Koizumi et al., 2015; Lau and Passingham, 2006; Maniscalco et
al., 2016; Odegaard et al., 2018a, 2018b; Rahnev et al., 2011; Rouault et al., 2018; Samaha et
al., 2016; Stolyarova et al., 2019), but the effect size (and sometimes even direction!) can vary
across stimulus or task manipulations as well as the (matched) performance level itself.

For these reasons, performance matching is not enough. Neither is the qualitative
characterization that performance and subjective reports both increase with stimulus strength.
Instead, we wish to understand the precise quantitative relationship among these variables,
including assessing the stability or generalizability of those relationships across experimental
manipulations, changing brain states, or individuals.

To date, however, no framework exists for precisely characterizing such nonlinear relationships
among psychological variables and how they may change in interesting ways. An impediment to
this enterprise has been that these relationships are, by definition, nonlinear linkages between
variables measured with error. Fitting any function linking two such variables constitutes a
nonlinear “errors in variables” problem, for which there is no known closed form solution (see
e.g., (Hausman et al., 1995; Huang et al., 2023; Li, 2002; Wolter and Fuller, 1982)(Hausman et
al., 1995; Huang et al., 2023; Li, 2002; Wolter and Fuller, 1982). Moreover, even if this problem
were solved, the functional form linking two or more psychological variables is unlikely to be
known a priori, requiring us to fall back on nonparametric methods (e.g. rank-based
correlations) designed merely to reveal the presence and strength of a potential relationship, not
its shape.

In short, we need a framework to (a) quantitatively characterize the nonlinear relationships
among psychological variables measured with error; and (b) quantitatively characterize how
much — and in what way — those relationships change with experimental manipulations, neural
factors, or individual differences.

Here, we introduce an analytic framework to address these problems in the study of the neural
and computational machinery underlying multiple psychological variables at once. The
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approach, which we term relative psychometric function (RPF) analysis, aims to systematically
characterize how some aspects of perception, experience, or stimulus processing behave
relative to the behavior of other aspects in response to stimulus or task manipulations, individual
differences, and so on. The framework is sufficiently general to be applied to investigation of the
relationship between any psychological or neural processes P, and P, which can be expressed
as psychometric functions of a common continuous variable such as stimulus intensity. And, for
the study of perceptual metacognition specifically, the RPF offers a method for quantifying,
parameterizing, and thus understanding the entire relative psychometric function linking various
objective and subjective aspects of perception — including confidence, visibility, vividness, clarity,
and any others that might be deemed relevant — across the whole range of performance that
might be elicited in a given task. This approach thus provides a tool for precisely measuring how
different subjective experiences might arise from equivalent intervals of objective processing
capacity, sidestepping earlier challenges described above. The RPF method as applied to
perceptual metacognition also answers recent calls for a ‘metacognitive psychophysics’
(Fleming, 2023)(Fleming, 2023), and builds upon the “metacognition as a step towards
explaining phenomenology” (M-STEP) approach introduced by Peters (2022)(2022), which
called for research to seek canonical metacognitive computations as a strategy for revealing
how subjective experience in general may be generated.

In what follows we introduce this relative psychometric function, derive its parameterization,
explore its behavior, develop and validate interpretable summary statistics, and discuss its
interpretation using a sample dataset in which performance and confidence were independently
manipulated across a large range of stimulus strengths.

We believe this framework will prove a highly flexible and powerful analysis tool in psychology
and neuroscience for studying relationships between various psychological and neural
processes. To facilitate this goal, all the methods, data, and analyses presented here are also
used to introduce the RPF toolbox (https://github.com/CNClaboratory/RPF) — an open-source
resource for the community to apply RPF analyses to any suitable dataset. Thus, we make
reference to this toolbox throughout, and include additional details about implementation on the
case study dataset presented here in the Supplemental Material.

Methods, Results, & Discussion

Deriving and interpreting the relative psychometric function (RPF)

Foundations of RPF analysis

The general form of the RPF

We define the relative psychometric function, or RPF for short, as the function describing the
relationship between any two conventional psychometric functions that are expressed in terms
of a common independent variable. More formally, suppose we have two psychometric functions
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where x is stimulus strength and P, and P, are different measures of performance, such as
p(correct) or average confidence'?. Provided that F, is invertible such that x = F,"(P,), we may
express P, in terms of P, by writing P, = F,(F,"(P;)). We may then define the relative
psychometric function as

R=F oF "'
2 1
P, =F(F(P)) @)
- R(Pl; e1’ 92)

and write P, = R(P,) for short. Thus, R uses the known psychometric functions F, and F, of a
common independent variable x in order to express P, as a function of P, (Figure 1).

R can be seen as the result of a coordinate transformation of F, in which the x input is replaced
with a P, input derived from the mapping x = F,”'(P;). Thus, the plot of P, = R(P,) resembles a
warped plot of P, = F,(x) in which the y-axis values are identical but their distribution along the
x-axis is warped according to the (likely nonlinear) transformation specified by P, = F;(x) (cf. the
three panels of Figure 1, and Figures S1 and S2 in the Supplemental Material). Over x
intervals where F,(x) is shallow, x values map onto a small range of P, values. This effectively
makes the corresponding x intervals of the F,(x) plot contract in their transformation to small P,
intervals of the R(P,) plot. Conversely, over x intervals where F,(x) is steep, similar
considerations make the corresponding x intervals of the F,(x) plot expand in their
transformation to large P, intervals of the R(P;) plot.

Importantly, deriving P, = R(P,) via the relationship of P, and P, to a common independent
variable x, where x is known exactly rather than measured with error, bypasses difficulties that
would arise from attempting to fit a function directly to the (P,, P,) data. Since both P, and P, are
variables measured with error and likely have a nonlinear relationship, attempting to fit P, =
R(P,) directly requires a nonlinear errors-in-variables model. However, there is no known
solution for fitting such models directly, and existing approaches require incorporation of
additional data and application of complex analysis methods tailored to specific cases (see e.g.
(Hausman et al., 1995; Huang et al., 2023; Li, 2002; Wolter and Fuller, 1982)(Hausman et al.,
1995; Huang et al., 2023; Li, 2002; Wolter and Fuller, 1982).

" Note that P is intended as shorthand for “performance” and does not necessarily connote a probability.
2 Here we use F rather than the conventional i to denote psychometric functions for consistency with the
RPF toolbox notation, in which it is more convenient to use F.
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In the case of analyzing the relationships between psychometric functions in experimental
psychology research, the (P, P,) data we might wish to relate are themselves already derived
from systematic manipulation of the common independent variable x, and thus the information
needed to estimate the relationships of P, and P, to x comes “for free” in the collection of the
(P4, P,) data. Thus, the approach described in this work is a natural choice for conducting RPF
analysis that easily bypasses thorny analysis issues with readily available data.

The metaperceptual RPF

As discussed in the introduction, one particular application of interest is the case where P, and
P, correspond to objective and subjective measures of perception, respectively. Here, we
conceive of objective measures of perception as pertaining to judgments about objective states
of the world (e.g. detecting stimulus presence or discriminating stimulus features), and
subjective measures as pertaining to judgments about one’s own perceptual processing (e.g.
assessing confidence in an objective judgment or reporting on the qualities of one’s perceptual
experience). This characterization of “objective” and “subjective” categories can be seen as a
generalization of the classical distinction between type 1 and type 2 perceptual tasks, in which
the type 1 task is to classify a stimulus event and the type 2 task is to classify one’s type 1
judgment as correct or incorrect (Clarke et al., 1959; Galvin et al., 2003; Maniscalco et al.,
2024)(Clarke et al., 1959; Galvin et al., 2003; Maniscalco et al., 2024).

Taking inspiration from the term “psychophysics,” we call this special class of RPFs
metaperceptual RPFs or metaperceptual functions. Just as the roots of the word
“psychophysical” connote “relationship of perception (psycho-) to stimulus (physical),” so the
roots of the word “metaperceptual” connote “relationship of judgments about perception (meta-)
to perception (perceptual).” We may also use the term type 2 psychometric function to refer to
more restricted cases where the RPF relates type 2 judgments about type 1 accuracy (typically
confidence ratings) to type 1 accuracy itself (e.g. as in p(correct)).

Objective measures of perception include accuracy measures such as p(correct) and the signal
detection theory (SDT) measure of sensitivity d’, and response bias measures such as
p(response) and the SDT measure of criterion ¢®. Subjective measures include ratings of
confidence and reports of experiential qualities such as visibility, clarity, intensity, etc. Subjective
measures may also characterize the relationship between subjective and objective judgments,
e.g. by measuring how well confidence ratings track accuracy as in the SDT measure of
metacognitive sensitivity meta-d’ (Fleming, 2017; Maniscalco and Lau, 2014, 2012)(Fleming,
2017; Maniscalco and Lau, 2014, 2012)).

Considerations for fitting the component psychometric functions of the RPF

Psychometric functions can be fitted to probability measures such as p(correct) and p(high
confidence) with standard maximum likelihood estimation (MLE) procedures (Kingdom and

3 Sometimes measures like p(response) and ¢ are considered to be subjective measures of response
bias. Here we consider them to be objective measures of perception insofar as these measures pertain to
judgments about the world, rather than judgments about one’s own perceptual processing.
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Prins, 2016)(Kingdom and Prins, 2016). However, MLE fitting of psychometric functions to
non-probabilistic measures requires a different approach. Least square fits maximize likelihood
when errors in the fit can be assumed to be normally distributed with constant variance
(Burnham and Anderson, 2002)(Burnham and Anderson, 2002), but this assumption may not
always hold (e.g. as for d’; see (Miller, 1996)(Miller, 1996)).

In the Supplemental Material we derive approaches to achieving MLE psychometric function
fits to several variables of central interest for metaperceptual functions: d’, meta-d’, and mean
rating (e.g. for confidence or visibility ratings). These approaches work by relating the variable in
question to probabilities for single-trial outcomes, and thus only require the standard MLE
assumption that outcome probabilities are independent across trials. For cases where
specifying or fitting analytical psychometric functions is problematic, we also develop
nonparametric RPF analysis methods (see below and Supplemental Material for further
discussion), and demonstrate that MLE and nonparametric approaches are comparable in their
ability to retrieve certain characteristics of the true RPF (see Supplemental Material).

It is possible to take a radically modular approach to constructing the RPF from its component
psychometric functions, in the sense that because the F, and F, fits can be treated
independently, they can be applied to any variable and approached with any fitting method prior
to being combined in an RPF. Thus e.qg. if F, is fitted via MLE, this does not constrain the
possibilities for fitting F, via MLE or least squares or nonparametric methods. In all cases, the
approach described in Eq. 2 is sufficiently general to conduct RPF analysis, with the proviso that
F, must be invertible. However, even if F, is not invertible, nonparametric analysis of the RPF
may still be conducted, as discussed further below.

All of these approaches to RPF analysis — i.e. modular construction of the RPF via some
combination of MLE fitting for probabilistic variables and certain non-probabilistic variables, least
square fitting, and nonparametric analysis — can be readily implemented in the RPF toolbox
(https://github.com/CNClaboratory/RPF).

P, =F,(x) P, = F(x) P,=R(P,)

performance P1
performance P2
performance P2

stimulus strength x stimulus strength x performance P1

Figure 1. The relative psychometric function (RPF). (Left, middle) Conventional psychometric
functions characterize the curve relating performance on a given task to stimulus strength. (Right) The
relative psychometric function characterizes the curve relating performance on one task (P,) to
performance on another (P,), given knowledge of how both relate to a common stimulus feature x. This
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function thus reveals how different measures of psychological processes relate to each other over a wide
range of performance levels. In situations where RPFs differ across experimental conditions, analysis of
the RPF can be used to help tease apart the behavior and underlying mechanisms of P, and P,. In the
special case where P, and P, correspond to objective and subjective aspects of perception (see main
text), the RPF is a metaperceptual function which can be used to isolate subjective aspects of perception
from potentially confounding aspects of objective task performance.

Probing RPF behavior: a case study using the Weibull RPF

How should we measure, summarize, and analyze the RPF? Can we summarize its behavior
neatly with a small number of parameter values, similar to how conventional psychometric
functions are typically analyzed in terms of location and slope parameters? Since the RPF
depends on the mathematical forms of the two psychometric functions F; and F, from which it is
composed, the answer to these questions requires specifying the equations for those functions.
Here, as a representative example, we consider the behavior of the RPF when P; and P, are
probabilities (e.g. p(correct) and p(high confidence)) fitted by Weibull functions F, and F,
(Kingdom and Prins, 2016)(Kingdom and Prins, 2016).

The Weibull function for F; and F, takes on the form

~(x/a )P
Pnan(x)=yn+ 1—7\n—y 1-—e " (3)
n

In this equation,
- n denotes the psychometric function to which all terms pertain, with n =1 and 2
corresponding to F;, and F, respectively
- P is performance (here, outcome probability)

- xis stimulus strength
-, is the chance level of responding for Pn

- An is the lapse rate, such that asymptotic performance for Pn is1 — }\n
- is the location parameter for Fn(x)

- [Sn is the slope parameter for Fn(x)

Solving Eq. 3 for x in the context of F, gives
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Substituting Eq. 4 into the general equation for R in Eq. 2 gives

()

We name Eq. 5 the Weibull RPF (abbreviated RW) as this is the mathematical form of the RPF

in the case where both F, and F, are Weibulls. We can decompose the Weibull RPF into the
following components:
- The F, guess rate Y, and lapse rate 7\2, which determine the minimum, chance level of

performance and maximum, asymptotic level of performance for the RWjust as they do

for F,.
1—?\1—y1
1-A~P ~

- The performance ratio which characterizes performance P, relative to its

possible range of values in [Yf 1- 7\1]. When P, is at the chance value of Y the
performance ratio = 1 and R, is at the chance level of performance for P,, i.e. Y, As P,
approaches the asymptotic value of 1 — 7\1, the performance ratio approaches infinity

and RW approaches the asymptotic level of performance for P,, i.e. 1 — AZ.

(04
- The relative location a, = a—z

1

B
- The relative slope B, = B—Z
1

- The F;slope BZ.

We explore how RW depends on o, BR, and [32 in Figure 2. Without loss of generality, we set the

scaling parameters y,= 0. 5, v, =0, and }‘1 = AZ = 0.
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Figure 2. Behavior of the Weibull RPF (RW) as a function of its three main parameters. Each plot shows
how performance on one task (P,) depends on performance on another task (P;) according to the Weibull

RPF specified by parameters for relative location a, = % (separate lines within each plot), relative slope
1

B
BR = B—Z (columns), and F, slope Bz (rows), as derived from the parameters of the component Weibull

functions F, and F,.

Overall, the behavior of the Weibull RPF is considerably more complicated than the standard
Weibull. First, we can observe that RW does not have a direct analogue to the Weibull’s slope

parameter {3, but rather has a variable shape and degree of curvature depending on the relative
slope BR and relative location a. When BR > 1, RW is sigmoidal; when BR <1, RW is inverse

sigmoidal; and when B,= LR, is concave down, linear, or concave up depending on Q. The
complexities of how RW’s shape changes depending on combinations of parameter values

obscures a straightforward and universally applicable interpretation of the function in terms of a

11



slope parameter, and so it is not clear that characterizing RW in terms of a slope parameter is

the best way to insightfully summarize its behavior.

Similarly, RW does not have a simple analogue to the Weibull’s location parameter «. In the

Weibull (Eq. 3), a acts as a location parameter in the sense that the function takes on 63.2% of
its maximal value above chance (i.e. 63.2% of the way between yand 1 — A) when x = «,

£\B
since substituting this value of x into the formula entails 1 — e_(a) =1-¢ '=0.632 Thus, a
tells us what value of x (“location”) yields this threshold function value of 63.2% of the

above-chance maximum. From Eq. 5, we see that RW achieves 63.2% of its above-chance

1-A - B,
maximum when %(In( 1_;_1:1 )) = 1. Solving for P; in this equation yields R s equivalent of
2 1 1

the Weibull’s location parameter a, which can be expressed as
_ ol
P —y1+(1—?\1—y1)1—e _F1(a2) (6)

Thus, R, takes on its threshold value at the value of P, given by F,(x) evaluated at the location
parameter of F,, i.e. at p = F1(°‘z)' This result is intuitive in that the RPF derives from a

transformation of the input variable of F, from x to P,, while leaving F,’s output P, unchanged
(Eq. 2). Thus, since a, is the value of x at which F, achieves its threshold value of P,, R, must

achieve its threshold value of P, at whatever value of P, that a, maps onto in the RPF

transformation, which is just F1(°‘z)'

Although the value of F1(°‘z) provides a measure of what P, value yields RW’s threshold value,

its interpretation is more complex than that of a for the Weibull function. Intuitively, lower and
higher values of a in the Weibull function roughly correspond to the curve “shifting” or “tilting” left
or right on the x-axis*. By contrast, the value at which RW achieves its threshold value is strongly

influenced by its curvature, which in turn depends on multiple parameters from F; and F,. For
instance, in the lower-left plot of Figure 2, the concave down and concave up curves achieve
their threshold values at very low and high values of P, respectively, due primarily to their
differences in curvature. This difference in threshold location cannot be attributed to a shift, tilt,
or translation in an otherwise similar curve, as is the case for the Weibull, and thus F (a)

cannot serve the same conceptual role as the Weibull’s location parameter a.

4 The slope of the Weibull function is actually controlled by both « and 3, although when plotted against
log x, a controls function translation and 3 controls slope (Kingdom and Prins, 2016)(Kingdom and Prins,
2016).

12
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Thus, it appears that while there are indeed aspects of the Weibull RPF’s behavior that can be
summarized with a small number of parameters — [3R and o, control shape, and F1(°‘z)

determines threshold — it is not clear that these parameters provide the same ease of
interpretation and leverage for understanding the behavior of the RPF in terms of
psychophysical performance as their counterparts a and § do for conventional psychometric
functions. Furthermore, the exact mathematical formulation for such parameters depends on the
psychometric functions used for F, and F,, entailing that different choices for these functions
may lead to different formulations for RPF summary parameters. These difficulties motivate the
alternative approaches for comparing RPFs across conditions that we develop and discuss
below.

Comparing RPFs across conditions

If using parameter values to summarize aspects of RPF behavior is not as straightforward and
perhaps not as fruitful as it is for conventional psychometric functions, what alternatives are
there for using RPFs to enrich our understanding of psychological processes?

One major goal of RPF analysis would be to investigate how the relationship between two target
psychological processes changes across different conditions. For example, analysis of the
metaperceptual RPF would be well-suited to address questions on how the relationship
between objective and subjective aspects of perceptions are influenced by various factors, such
as, “Is the relationship between subjective judgments and task accuracy the same in central
versus peripheral visual field locations?” (Odegaard et al., 2018a; Winter and Peters,
2022)(Odegaard et al., 2018a; Winter and Peters, 2022) or “Does transcranial magnetic
stimulation to a certain region of interest alter the relationship between confidence and task
accuracy?” (Peters et al., 2017a; Rahnev et al., 2012; Rounis et al., 2010; Ruby et al.,
2018)(Peters et al., 2017a; Rahnev et al., 2012; Rounis et al., 2010; Ruby et al., 2018).

The behavior of the RPF across conditions sheds light on the relationship between P, and P,.
Any across-condition changes in the RPF would indicate a differential effect of condition on P,
and P,, such that the changes in P, due to condition could not be solely attributed to changes in
P, or vice versa (or else the RPF would be identical), and would demonstrate that P, and P, are
produced by at least partially separable processes. Alternatively, if P, and P, differ across
conditions, but do so in such a way that preserves the RPF describing their relationship, this
would be consistent with the possibility that the changes in P, are indeed attributable entirely to
changes in P, (or vice versa), or that both are products of a single underlying process
characterized by a constant RPF.

Below we consider two approaches to comparing RPFs across conditions: an AUC-based
approach and a model comparison approach.

AUC approach: area under the RPF curve

As discussed in the Introduction, the motivating example behind this work is performance
matching in the consciousness / metacognition literature, in which we seek to find conditions
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where objective task performance (P,) is the same but subjective reports of awareness or
confidence (P,) differ (Morales et al., 2022)(Morales et al., 2022). Notice that the performance
matching approach essentially attempts to compare a vertical slice of two RPFs at a particular
P, value. Thus, a natural generalization of the performance matching approach is to compare
two RPFs across a fixed interval of P, values rather than at a single fixed value. Within a given
RPF, summing the values of P, across the entire interval of P, values amounts to computing the
area under the curve (AUC) of the RPF, and dividing this AUC by the length of the P, interval
yields the average value of P, over that interval. These AUCs and average P, values can then
be compared across conditions to assess whether condition affects P, over and above any
effects it may have on P,. (Note: AUCs and average P, values are suitable to evaluate whether
there is any RPF difference between conditions, but are not suitable if the user’s goal is to
characterize the exact shape of the RPF function; see Benefits and limitations of the AUC
method, below.)

More formally, the RPF AUC is given by

b
AUC = [ R(P)dP, (7)

This integral can be computed without an analytic solution, and indeed without specifying an
equation for R, by using x = FII(Pl) and P, = F_(x) to compute the RPF as P, = FZ(le(Pl))

(Eqg. 2) and performing numerical integration.

Since the aim of this analysis approach is to compare AUCs across conditions for a fixed
interval of P, values, it must be the case that all RPFs being analyzed fully span that interval. In
general, this is not guaranteed to be the case unless the fixed P, interval is chosen
appropriately. For instance, in a grating tilt discrimination task having conditions where the
grating is attended or unattended across several levels of grating contrast spanning the full
possible range of contrasts from 0 to 1, the fitted psychometric function for p(correct) in the
attended condition may range from chance performance of 0.5 at zero contrast to a near-ceiling
value (e.g. 0.98) at maximal contrast, whereas the fitted function for the unattended condition
may range from chance performance at zero contrast to a level of performance at maximal
contrast that is considerably lower than in the attended condition (e.g. 0.8). Thus, although the
attended condition RPF spans a P, interval of [0.5, 0.98], its AUC can only be compared to that
of the unattended condition for a fixed P, interval over [0.5, 0.8].°

® Note that the P, interval over which two conditions are compared should be fixed across conditions (e.g.
attended, unattended) within a subject, but can be allowed to vary across subjects in an experiment. Here
we derive the within-subject comparison process.
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Thus, the intervals of P, values exhibited by each RPF being compared jointly determine lower
and upper bounds on possible intervals of P, values that are common to all RPFs. The lower
bound L on the common P, interval is given by

L = maxc mmx P1 ox (8)

where P1 o denotes the value of P, at condition ¢ and stimulus level x. In other words, the lower

bound for a common P, interval across conditions is the minimal within-condition value of P, that
is maximal across conditions (i.e., the smallest P, value shared by all conditions). By similar
reasoning, the upper bound U is given by

U = minc max_ P1 ox (9)

i.e. the maximal within-condition value of P, that is minimal across conditions (i.e., the largest P;
value shared by all conditions). For AUCs to be computed with a fixed P, interval [a, b] that is
common to all conditions, it must be the case that

a=Lb<U (10)

and the widest possible common P, interval is given by [L, U].

These considerations are illustrated in Figure 3. The psychometric functions for P, in conditions
A and B have different values at the minimum and maximum values of x (left panel), which
entails that their corresponding RPFs do not span the same range of P, values (right panel).
Thus, to compare AUC for a fixed P, interval, this interval must be restricted to the set of P,
values that is common to both functions (shaded region). The lower and upper bounds of this
common interval are set by the largest across-condition minimum P, value and the smallest
across-condition maximum P, value, respectively, as described in Egs. 8 and 9.

In the example of Figure 3, RPF AUC is larger for condition A than for condition B. This
indicates that condition influences P, over and above its influence on P,, and that this differential
effect holds over a wide range of P, values.

Normalizing the AUC by the length of the P, interval over which it is computed yields the
average P, value over that interval:

b
- 1 AUC
P, = b_a{R(Pl)dPl == (11)
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The quantitative values of this metric are more intuitive to interpret than those for AUC. The
normalization it provides may also be desirable in cases where the P, intervals used to compute
AUC differ across subjects, since P, interval size influences AUC and the spirit of this analysis
approach is to factor out or control for the influence of P,. However, this consideration is
mitigated somewhat given that the effect of interest pertains to within-subject differences in AUC
as a function of condition, and the P, interval within each subject is constant across conditions.

FZ also has an intuitive connection to the performance matching approach discussed above.

Whereas performance matching seeks to measure the difference between subjective reports at
a fixed value of task performance, comparing 132 for the metaperceptual RPF across conditions

gives the average difference between subjective reports over a range of task performance
levels.

P, =F,(x) P, = F,(x) P,=R(P,)

performance P,]
performance P2
performance P2

condition A
condition B

stimulus strength x stimulus strength x performance P1

Figure 3. Comparing RPFs with the AUC approach. In this illustrative example, psychometric functions
for P, and P, differ across condition, and so do their corresponding RPFs. The difference in the RPFs can
be quantified by comparing the area under the curve (AUC) over the set of P, values that both RPFs
share in common (shaded region). Here, condition A has the higher AUC, indicating higher levels of P,
across the fixed P, interval. The AUCs can be divided by the length of this common P, interval to yield the
average P, values over the interval.

Nonparametric computation of AUC

In the foregoing, we have assumed that P, and P, data are fitted with psychometric functions F,
and F,. However, there may be cases where fitting P, and/or P, encounters difficulties, such as:
e The researcher may be uncertain about the most appropriate functional form to choose

for F, and/or F,.
The researcher may prefer to avoid making parametric assumptions about F; and/or F,.
For certain dependent variables, it may be unclear, complicated, and/or labor intensive
to develop an MLE fitting approach and implement the fitting procedure in analysis code
(consider e.g. the discussion of MLE fitting for d’, meta-d’ and mean rating as discussed
above and in Supplemental Material).
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e When plotted against stimulus strength x, the data to be fitted may be monotonically
decreasing (e.g. reaction time data) or non-monotonic (e.g. when rating confidence in a
detection task, confidence may be high for “no” responses at low values of x and “yes”
responses at high values of x, yielding a U-shaped function of confidence when
collapsed across response type), whereas standard psychometric functions are
monotonically increasing with x.

e Limitations and noise in the data may cause technical difficulties with the fitting
procedure, or may yield fitted parameter values that are implausible or present analysis
difficulties (e.g. infinite slope).

These difficulties can be circumvented by computing AUC nonparametrically. The simplest
nonparametric approach is to perform linear interpolation between the data points in the plot of
P, vs. P, and compute AUC from the resulting trapezoids, analogous to the nonparametric
measure of area under the ROC curve A, (Pollack and Hsieh, 1969)(Pollack and Hsieh, 1969).
A hybrid approach can also be applied in which the RPF is constructed from a parametric fit of
P, = F4(x) and a nonparametric estimation of P, = F,(x) via interpolation. (However, note that a
hybrid approach where P, data are interpolated and P, data are fitted is not viable, since the
function yielded by interpolation of P, will in general not be monotonic with x and so will not be
invertible, preventing the computation of the RPF as described in Eq. 2.)

In Supplemental Material we discuss methodological considerations for nonparametric
computation of RPF AUC in more detail, and in Supplemental Material we present simulations
demonstrating that nonparametric methods are similarly effective to parametric methods at
estimating the true AUC of a known generating RPF under data collection conditions typical of
those used in psychophysical experiments.

Benefits and limitations of the AUC method

Summarizing RPFs with AUC (orFZ) in this manner has a number of virtues:

1. Ease of computation. RPF AUC can be computed via numerical integration based on
Fi(x) and F,(x) without needing to find a closed form expression for R(P,).

2. Ease of interpretation. RPF AUC provides a single, easy to interpret measure
(compared to the multiple, complex, interrelated parameters of the Weibull RPF, for
example).

3. Universality. AUC computations are applicable to any RPF for any P, and P,,
regardless of the functional forms of F, and F,.

4. Robustness. AUC is more robust to measurement error than general psychometric
function parameter estimation. For instance, in certain cases small changes in the data
can yield relatively large differences in the fitted parameters without having large effects
on the overall shape of the psychometric function, which in turn would lead to only small
changes in the RPF AUC. In fact, AUC estimation can even be robust if F,(x) is
constructed from piecewise linear interpolation rather than fitting a function, further
simplifying the analysis approach; we explore this possibility in detail in the
Supplemental Material.
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The AUC method is most straightforward to interpret in cases where the RPFs do not intersect
over the chosen fixed P, interval, since in such cases the values of P, in one condition are
always higher than in the other for every value of P, in the interval. However, if the empirical
RPFs do intersect in this interval, then the relationship between AUCs across conditions differs
on either side of the intersection point, which complicates interpretation of AUC computed over
the whole interval. Two possibilities must be considered: (1) the “true” generating RPFs are
similar or identical over this interval, and the intersection in the empirical RPFs is due to
statistical noise; or (2) the generating RPFs are distinct and do indeed intersect over this
interval, as is validly reflected in the empirical RPFs. Since across-condition AUCs have
opposite relationships on either side of the intersection point, computing AUC over the entire
interval will tend to wash out any across-condition differences. This behavior can be a virtue that
accurately reflects the absence of an effect in case (1), but may underestimate or even fail to
detect the presence of a true effect in case (2).

For instance, consider an idealized case where over a P, interval [0, 1], the empirical RPF in
condition A has a constant value of 0.5, and the empirical RPF in condition B is linear with
values [0, 1] at the endpoints of the P, interval. In this case, RPF A forms a rectangle with base
1 and height 0.5, and RPF B forms a triangle with base 1 and height 1 that intersects RPF A at
P, = 0.5. Both RPFs have an AUC of 0.5 despite differing considerably in their shape, since A's
AUC is larger than B’s over P, € [0, 0.5] and the opposite is true over P, € [0.5, 1].

Thus, if the “true” generating RPFs for A and B are similar or identical, and the empirical RPFs
A and B differ due to noise, their identical AUCs will accurately reflect the absence of a
difference in the generating RPFs. Conversely, if the generating RPFs have forms that are well
represented by the empirical RPFs A and B, then computing AUC over the interval [0, 1] will fail
to quantify the difference between the generating RPFs due to their intersection over that
interval. In cases where the generating RPFs intersect in this way, the model comparison
approach described below can still detect the difference between them.

Model comparison approach

An alternative approach to comparing RPFs across conditions is to capitalize on the observation
that if a functional form for the RPF is available, the parameters of this function can be
constrained in such a way as to ensure that fitted RPFs across conditions are identical. The
data can then be fitted with two different models, one of which allows parameters to vary freely
in such a way that the fitted RPFs can differ across conditions (“free model”), and one of which
constrains parameters in such a way that the fitted RPFs are constrained to be constant across
conditions (“constrained model”). Standard model comparison analysis approaches can then be
conducted to investigate whether the free or constrained model provides a better account of the
data, taking into account how the greater degrees of freedom in the free model introduce the
possibility of overfitting. This model comparison analysis can be performed e.g. with information
theoretic measures such as Akaike Information Criterion (AIC) or Bayesian Information Criterion
(BIC) (Vrieze, 2012)(Vrieze, 2012), or alternatively with cross validation methods to assess
model generalizability (de Rooij and Weeda, 2020)(de Rooij and Weeda, 2020).
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For instance, consider the functional form of the Weibull RPF R, discussed above (Eq. 5). A
trivial way to ensure that R, is constant across conditions would be to constrain all parameters

for F, and F, to be constant across conditions. However, a more artful approach would be to
allow the parameters of F, and F, to have the maximal degree of freedom possible while still
constraining the corresponding RPFs to be constant across conditions. Investigation of Eq. 5
shows that this latter goal can be achieved by constraining the following parameter values to be
constant across conditions: Yo )‘1’ Bl, Y, 7\2, BZ, and % This set of constraints allows a and a,

1

to vary across conditions in the fitting of F, and F,, so long as the resulting parameter values

a
conserve constant values for a—z across conditions. The free model, by contrast, would relax

1

some or all of these constraints and thus allow fitted RPFs to differ across conditions.

Generalizing the above discussion, there are actually multiple ways to define “constrained” and
“free” models, depending on what constraints on across-condition parameter values are
imposed over and above the key set of constraints determining whether RPFs can vary across
conditions or not. An extended model comparison analysis could thus consider a family of
models, some of which are constrained and others of which are free in the way defined above.
Interpretation of the results of such an analysis could reveal findings such that e.g. the best
fitting model constrains % but not the § parameters, or similar patterns, which could provide a

more nuanced understanding of how condition influences the RPFs and the mechanisms
underlying their behavior.

Regardless, the most basic and foundational question would still be whether the empirical RPFs
are best characterized by constrained or free models. If free models are best supported in the
model comparison analysis, this would suggest that RPFs are modulated by condition, and thus
that the psychological processes generating P, and P, are at least partially separable.
Conversely, if constrained models are best supported, this would suggest that the observed
RPFs are consistent with the possibility that P, determines P, (or vice versa), or that both are
generated by a single underlying process characterized by a constant RPF.

The model comparison approach has the advantages over the AUC approach that it can detect
differences in RPFs even in cases where RPFs intersect in a way that yields similar AUC
values, and that it can more specifically pinpoint which aspects of RPF behavior are influenced
by condition. However, it has the disadvantages that it is more complex and resource intensive
to conduct, and requires deriving an analytic expression for the RPF. (Note: some analytic
expressions are derived in the Supplemental Material and implemented in the open-source
RPF toolbox which accompanies this paper.)

Empirical case study

In this next section, we demonstrate the power and utility of the RPF method by applying it to
an empirical dataset in which subjects made perceptual decisions about coherent dot motion
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and rated confidence. Seven levels of motion coherence were presented, allowing construction
of psychometric functions for accuracy, confidence, and metacognitive sensitivity. Experimental
conditions were contrived so as to attempt to modulate the relationship between confidence and
accuracy, naturally inviting an RPF analysis approach.

Experimental methods

Twenty-one healthy adult human subjects viewed random dot kinematogram (RDK) stimuli
which continuously filled the entirety of a computer monitor with random dot motion. In a
two-alternative (2AFC) task design, on each trial of the experiment a circular patch of these dots
to the left or right of a central fixation cross briefly displayed coherent motion in a downward
direction. The observer’s task was to indicate which side of the display contained the coherent
downward motion and rate their confidence on a scale of 1-4; they reported both choices with a
single keypress.

We varied three aspects of the task to examine their effects on the relationship between
accuracy and confidence. First, we varied motion coherence by randomly selecting the
coherence of the downward dot motion on each trial from a list of seven values evenly spaced
between 10% and 80% coherence. Second, we varied dot density by setting the density of the
dots across the whole display on each trial to one of three levels (low = 1 dot/deg?, medium = 3
dots/deg?, high = 9 dots/deg?). Third, we varied changes in dot density across trials by either
setting dot density randomly on each trial (interleaved trial structure), or by holding dot density
constant with each block of trials (blocked trial structure).

Please see Supplemental Material for full details of participants, stimuli, equipment, and
experimental design.
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Figure 4. Behavioral task procedures. (A) Each trial began with a pre-stimulus period, during which
full-field random dot motion was shown (black arrows illustrate dot motion direction). Subsequently, within
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one of two circular regions of the screen (indicated here by the red circles to the left and right of
fixation—red circles were shown to participants only during preliminary practice trials but not during
experimental trials), coherent downward dot-motion occurred, followed by a response period in which
participants indicated on which side they saw the coherent motion and rated their decision confidence.
The central red circle indicates an area around the fixation cross where no dots were presented; this red
circle was not shown to participants and is used here for illustration purposes. (B) Participants underwent
two trial structure conditions, blocked and interleaved, on two different days of testing. In the blocked
condition, dot density was constant across trials within a given block, whereas in the interleaved
condition, dot density varied randomly across trials. Blocked versus interleaved days and order of density
blocks was counterbalanced across all participants.

Data analysis

Following previous demonstrations (Koizumi et al., 2015; Odegaard et al., 2018b; Rollwage et
al., 2020; Samaha et al., 2016; Stolyarova et al., 2019)(Koizumi et al., 2015; Odegaard et al.,
2018b; Rollwage et al., 2020; Samaha et al., 2016; Stolyarova et al., 2019), we expected higher
dot density conditions to yield higher confidence, even when task performance was similar. We
also examined whether metacognitive sensitivity — quantified as meta-d’ — would differ across
dot density conditions. To explore these possibilities, we fit Weibull psychometric functions to d’,
mean confidence, and meta-d’ as a function of dot motion coherence for each subject in each
condition (dot density: high, medium, low; trial structure: blocked, interleaved) using the
methods for MLE fitting of these variables developed in the Supplemental Material. This
allowed us to specify two categories of metaperceptual RPFs, one relating d’ to mean
confidence and another relating d’ to meta-d’; we computed these for each subject and each
condition. All RPF analyses were performed using our open-source RPF toolbox, available at
https://github.com/CNClaboratory/RPF.

For each of these metaperceptual RPFs, we then computed the AUC and 152 for each level of

dot density and trial structure separately for each subject, and submitted these to 3 (Dot
Density: High, Medium, Low) x 2 (Trial Structure: Blocked, Interleaved) repeated-measures
analyses of variance (ANOVAS).

Empirical results and discussion

We found that dot density did indeed affect both mean confidence judgments and metacognitive
sensitivity (meta-d’) over and above any effects on d’, primarily in the interleaved but not
blocked trial structure.

In the plotted data (Figures 5 & 6), for illustrative purposes we show RPF curves for each trial
structure and dot density condition that are fitted to the combined group data concatenated
across all subjects, rather than an average across the fitted curves for each subject individually.
However, we remind the reader that all statistical measures were derived from single-subject
fits.

21


https://paperpile.com/c/nWNksy/Ly0u+iDiU+PZi3+288T+Eom4
https://paperpile.com/c/nWNksy/Ly0u+iDiU+PZi3+288T+Eom4
https://paperpile.com/c/nWNksy/Ly0u+iDiU+PZi3+288T+Eom4
https://github.com/CNClaboratory/RPF

For mean confidence versus d’ (Figure 5), using the raw AUC in a 3 (Dot Density: High,
Medium, Low) x 2 (Trial Structure: Blocked, Interleaved) repeated-measures ANOVA, we found

a main effect of Dot Density (F(2,40) = 7.6633, p = 0.0015, n; = 0.277) but not Trial Structure
(F(1,40) = 2.0613, p = 0.1665, ni = 0.093), and a significant Trial Structure x Dot Density

interaction (F(2,40) = 4.0675, p = 0.0247, ni = 0.169) such that mean confidence increased with

increasing dot density in the interleaved but not blocked trial structure. The pattern was similar
when we used a second repeated-measures ANOVA to examine the normalized AUC measure

152, with a main effect of Dot Density (F(2,40) = 6.4047, p = 0.0039, n; = 0.243) but not Trial
Structure (F(1,40) = 0.8951, p = 0.3554, n; = 0.043) and a marginal Trial Structure x Dot Density

interaction (F(2,40) = 3.2056, p = 0.0511, n; = 0.138) — again suggestive that mean confidence

increased with increasing dot density primarily in the interleaved but not blocked trial structure.

For metacognitive sensitivity (meta-d’) versus d’ (Figure 6), we observed a similar pattern.
Using raw AUC, a repeated-measures ANOVA revealed a main effect of Dot Density (F(2,40) =

5.6903, p = 0.0067, n; = 0.221) but not Trial Structure (F(1,40) = 0.0092, p = 0.9244, n; =0),
and again a Trial Structure x Dot Density interaction (F(2,40) = 4.0087, p = 0.0259, n:) =0.167)

such that meta-d’ was significantly higher with increasing dot density in the interleaved but not
blocked trial structure. A final repeated-measures ANOVA on the normalized AUC measure 152

for meta-d’ revealed again a main effect of Dot Density (F(2,40) = 4.4246, p = 0.0184, ﬂ; =
0.181) but not Trial Structure (F(1,40) = 0.8020, p = 0.3811, n; = 0.039), and a trending
interaction between Trial Structure and Dot Density (F(2,40) = 2.9437, p = 0.0642, n; =0.128) -

again suggestive that metacognitive sensitivity was higher in higher dot density conditions,
primarily in the interleaved trial structure.
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Figure 5. Results of the empirical case study showing the metaperceptual RPF relating d’ and
mean confidence ratings. Plots here visualize the statistical effects across subjects (see Figure 7) via
direct fits to the group-level data. (A-C) show F, (d’ versus dot motion coherence), F, (mean confidence
versus dot motion coherence), and the RPF R (mean confidence versus d’) for the blocked trials; (D-F)
show the same for the interleaved trials. Fitted RPFs for the blocked (C) and interleaved (F) trial structure
show visually that the blocked trials resulted in little-to-no apparent differences in mean confidence as a
function of dot density, while the interleaved trials show RPF separation with higher mean confidence in
higher dot density conditions over the same interval of task performance. Shaded regions in (C) and (F)
show the d' interval common to all dot density conditions in the group-level data.
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Figure 6. Results of the empirical case study showing the metaperceptual RPF relating d’ and
metacognitive sensitivity, measured with meta-d’. Plots here visualize the statistical effects across
subjects (see Figure 7) via direct fits to the group-level data. Similar to the plots for mean confidence,
(A-C) show F, (d’ versus dot motion coherence), F, (meta-d’ versus dot motion coherence), and the RPF
R (meta-d’ versus d’) for the blocked trials; (D-F) show the same for the interleaved trials. Fitted RPFs for
the blocked (C) and interleaved (F) trial structure show visually that the blocked trials resulted in no
apparent differences in meta-d’ as a function of dot density, while the interleaved trials show RPF
separation with higher meta-ad’ in higher dot density conditions over the same interval of task
performance. Shaded regions in (C) and (F) show the d'interval common to all dot density conditions in
the group-level data. Dashed lines in (C) and (F) show the line of unity where meta-d’ = d’, corresponding
to the expected value of meta-d’ under signal detection theory.
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Figure 7. Results of the empirical case study showing the AUC-based analyses using raw AUC

and 152. Both raw AUC (A, C) and its normalized variant, 152 (B, D) confirm visual inspection of the RPFs in

the previous figures, showing significant main effects of the ANOVA factor Dot Density and interactions
between the ANOVA factors Trial Structure (Blocked vs Interleaved) and Dot Density. That is, increasing
dot density led to both higher mean confidence and higher metacognitive sensitivity (meta-d’) over a
matched performance interval, especially in the interleaved trials. See main text for statistical details.

Together, these results demonstrate that dot density does indeed affect both mean reported
confidence rating and metacognitive sensitivity (meta-d’), especially when density is varied
pseudorandomly on every trial.

These findings are of utility to the community in several ways. First, from a basic science
perspective, the observation that a manipulation as simple as the density of an RDK can induce
changes in overall mean confidence over and above any effect on task performance capacity is
consistent with findings in the literature on the so-called “positive evidence” or
“response-congruent evidence” bias in metacognition (Rollwage et al., 2020; Samaha and
Denison, 2022)(Rollwage et al., 2020; Samaha and Denison, 2022). In a number of empirical
investigations, it has been shown that higher amounts of absolute magnitude of evidence
available to the observer to make a perceptual decision are associated with increased
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subjective confidence reports; these manipulations of evidence can take the form of contrast or
luminance (e.g., (Koizumi et al., 2015; Rausch et al., 2017; Samaha et al., 2019, 2016)(Koizumi
et al., 2015; Rausch et al., 2017; Samaha et al., 2019, 2016)), dot motion coherence
(Zylberberg et al., 2012)(Zylberberg et al., 2012), or even more cognitive type evidence such as
facial attractiveness (Ceja et al., 2022)(Ceja et al., 2022). Models have been proposed to
account for these and similar findings, placing constraints on how confidence might be (neurally)
computed in perceptual decisions (e.g., (Maniscalco et al., 2021, 2016; Peters et al.,
2017c)(Maniscalco et al., 2021, 2016; Peters et al., 2017c)).

Here we add to these previous findings by showing that in addition to dot density influencing
overall confidence ratings separately from its influence on task performance, dot density also
influences metacognitive sensitivity — here measured with meta-d’. This new empirical finding
meaningfully adds to understanding of the computational relationship between performance and
confidence ratings even on a trial-by-trial basis, providing rich opportunities for future
computational studies to use these and similar kinds of data to arbitrate among candidate
process models giving rise to metacognitive judgments (e.g., (Adler and Ma, 2018a, 2018b;
Aitchison et al., 2015; Denison et al., 2018; Kiani et al., 2014; Maniscalco et al., 2016; Miyoshi
and Lau, 2020; Peters et al., 2017a, 2017c; Peters and Lau, 2015; Winter and Peters, 2022;
Zylberberg et al., 2016, 2014)(Adler and Ma, 2018a, 2018b; Aitchison et al., 2015; Denison et
al., 2018; Kiani et al., 2014; Maniscalco et al., 2016; Miyoshi and Lau, 2020; Peters et al.,
2017a, 2017c; Peters and Lau, 2015; Winter and Peters, 2022; Zylberberg et al., 2016, 2014)).
It is also notable that the effect appeared primarily in the interleaved condition, building upon
recent work exploring observers’ capacity to update type 2 criteria with changing uncertainty
conditions (Lee et al., 2023; Rahnev and Denison, n.d.)(Lee et al., 2023; Rahnev and Denison,
n.d.).

However, our intent with this empirical demonstration was not only to demonstrate that
manipulations of dot motion evidence may influence confidence in separate ways than
influences on task performance, which had previously been established. Here, we were also
concerned with showing how full RPF analyses can provide benefit over measuring differences
in confidence or metacognitive sensitivity at one or two levels of (matched) performance.

Importantly, one can see clearly through the RPF approach that the size of the effect on
subjective experience depends strongly on the performance level at which the effect is
measured: for both mean confidence (Figures 5 & 7) and metacognitive sensitivity (Figures 6
& 7), the difference in the subjective report appears to grow as a function of task performance;
this occurs with specific quantitative relationships to task performance in both cases. By
extension, if a researcher were to try to measure the effect size of a manipulation’s influence on
mean confidence or meta-d’, but were unable to precisely match task performance across
conditions or subjects, the effect size of interest would be at best poorly estimated, or at worst
entirely missed (e.g., at lower levels of d’). By measuring and fitting the entire RPF and
engaging in the AUC-based analyses presented here, such differences due to nuisance
variables can be minimized, revealing a robust and quantitatively precise measure of subjective
experience differences independent of task performance. Importantly, process models of
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metacognition or subjective experience in general — such as those mentioned above — become
much more highly constrained if they must explain behavioral data across the entire RPF in
multiple conditions, opening an exciting new set of questions for the community (Fleming, 2023;
Peters, 2022)(Fleming, 2023; Peters, 2022).

While the data presented here perhaps consist of fewer subjects than would be ideal, they
nevertheless demonstrate the robustness of the RPF method to small numbers of subjects or
even to few trials per condition. Here, we collected only 36 trials per condition (7 levels of RDK
motion coherence, Blocked vs Interleaved Trial Structure, and 3 levels of Dot Density). The
entire dataset was collected across only approximately two hours of testing per subject,
meaning that even as few as 36 trials per condition can be sufficient for conducting robust and
precise RPF analyses comparing across conditions with the AUC-based metrics. (Of course,
more trials are better, and following best practices for fitting d’ or meta-d’ in any dataset would
suggest at least 100 trials per condition for robust estimates of these metrics.) Future work
should seek to confirm and expand the initial findings presented here regarding the effect of dot
density manipulations on performance, confidence, metacognitive sensitivity, and their
interrelations.

Overall, this empirical case study highlights an exciting direction for the study of subjective
experience and for use of the RPF analytic approach in general. We believe these results and
the analytic approach to be of great value both within the metacognition and subjective
experience community (Michel et al., 2019; Rahnev et al., 2022)(Michel et al., 2019; Rahnev et
al., 2022) and beyond.

General discussion and future directions

Summary

In this piece we have laid out a novel framework for investigating, in general, the quantitative
relationship between two psychological processes measured under noisy conditions and how
these relationships may vary with any experimental manipulation or intervention that is of
interest to the researcher. This framework includes the derivation of the relative psychometric
function (RPF) under parametric assumptions, including special considerations for fitting
customized psychometric functions to non-standard psychometric variables such as task
performance capacity measured with the signal detection theoretic metric d’, confidence ratings,
and metacognitive sensitivity (meta-d’) (Maniscalco and Lau, 2014, 2012)(Maniscalco and Lau,
2014, 2012). We also developed and tested a series of metrics and algorithms designed to
provide intuitive insight into how the RPF may change across experimental conditions, including

the area under the RPF (AUC) method and its normalized variant, 152. These metrics provide a

clear, precise, and interpretable approach for interpreting variations in RPFs across
experimental conditions. And for those who wish to precisely evaluate other relationships
among RPFs or how they may be captured by process models (e.g. signal detection or
Bayesian decision theoretic, evidence accumulation models, etc.), we also lay out a model
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comparison approach in which the RPF can be constrained to be equivalent across conditions
or free to vary in different ways. This model-based approach can provide important nuance and
context to supplement the AUC-based analyses developed here.

We demonstrated the utility of the RPF framework by way of example, showing how the RPF
approach can facilitate quantifying precisely how a manipulation of interest impacts subjective
processing independent of (or over and above effect on) objective processing. In this case study
on the metaperceptual RPF, we found that our dot density manipulation led to changes in mean
confidence and also changes in metacognitive sensitivity (meta-d’) that were separable from the
influence of this manipulation on task performance in this two-alternative forced-choice task.

Although these empirical results are valuable and contribute to the literature on how
metacognition behaves, our primary excitement lies in the promise of the RPF framework to
study the quantitative relationship between any pair of psychological variables the researcher
may desire. Thus, we emphasize that the RPF framework can be used not only to study the
relationship between objective processing capacity and subjective experience, but for
characterizing the quantitative relationship among any two (likely nonlinearly) related
psychological processes — including those for which no functional form relating each process to
objective stimulus properties is known or presumed (see Supplemental Material for details).

This is also why we have developed the RPF toolbox as an open-source community resource,
available for download and extension from https://github.com/CNClaboratory/RPF. The toolbox
supports a full analysis pipeline from raw trial-level data for a single subject to comprehensive
RPF analysis results and plots. It is designed to allow for an easy, out-of-the-box analysis
pipeline that can be conducted using only a few high-level functions while implicitly handling
many of the subtleties and complexities of RPF analysis under the hood, while still allowing for
complete control and customizability of the finer details of the analysis where desired. It is highly
flexible, including built-in support for computing many dependent variables of interest from
trial-level data and various methods for fitting or interpolating the data. For more details, please
see Supplementary Material, section “RPF toolbox”.

Advantages of the RPF method over standard performance-matching for
the study of subjective experience

A primary use for RPF analysis is for isolating the neural or computational correlates of
subjective aspects of perception from those giving rise to task performance. Since Lau first
articulated this need (Lau, 2008; Lau and Passingham, 2006)(Lau, 2008; Lau and Passingham,
2006), many groups have sought to control for ‘performance confounds’ by finding one or two
levels of matched performance across various experimental manipulations, and then examining
how subjective measures differ (Morales et al., 2022; Peters et al., 2017b)(Morales et al., 2022;
Peters et al., 2017b). However, as introduced in the introduction, this performance matching
approach is unsatisfactory for several major reasons: it relies on a statistical null effect (finding
conditions where subjective experience differs but performance fails to differ), and differences in
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subjective experience can depend on the level of matched performance selected by the
experimenter.

As we have seen, RPF analysis circumvents these challenges by revealing differences in P,
(e.g., confidence) over an entire matched interval of P, (e.g., performance). Importantly,
however, we can also relate components of RPF analysis directly back to more traditional
performance-matching approaches to facilitate direct comparison with existing literature. For
example, we can see that if one measures the entire RPF for each condition of interest, RPF
AUC analyses can be tuned to any intervals within the available common P, interval across
conditions of interest. In the limit as this interval approaches zero, computing RPF AUC reduces
to “reading off” the P, (subjective) values given a particular P, (performance) value, i.e. selecting
exactly the matched-performance level desired through relying on the fitted functions. Doing so
avoids the methodological and statistical disadvantages of using staircasing or other methods to
discover conditions where subjective measures vary but performance measures fail to vary. The
freedom to select one or two levels of exactly matched performance also evokes
performance-matching studies which have used two or more levels of performance-matched
conditions (e.g., hard and easy, (Koizumi et al., 2015)(Koizumi et al., 2015); see (Rahnev et al.,
2020)(Rahnev et al., 2020) for other potential datasets). RPF AUC analyses could be used to
reexamine such data using RPF AUC analyses, potentially providing a more principled analytic
approach; this might also be possible through the interpolation-based nonparametric approach
(described in more detail in Supplemental Material) even if fitting a parametric RPF is not
possible. Thus, RPF analysis provides a natural extension to more traditional
performance-matching approaches in a way that facilitates direct comparison to previous
empirical and theoretical literature.

Relationship to other recent work linking relative and absolute judgments

The study of psychophysics has a long and clever history, spanning 150 years of quantitative
psychological research. A large literature has developed documenting the relationship between
small changes in physical stimulus magnitude and either humans’ (or non-human animals’)
ability to discriminate or detect such differences, as well as the relationship between physical
stimulus magnitude and absolute stimulus magnitude judgments — even of a subjective nature
(brightness, loudness, painfulness, and so on). Weber’s law, Fechner’s law, Stevens’ power law
— these are all well-known, foundational examples that collectively support quantitative
psychology across nearly countless domains of study.

Recently, a unifying framework linking such relative and absolute psychometric judgments — i.e.
the relationship between questions such as “Was the left light brighter than the right one?”
versus “How bright is this light?” — was proposed by Zhou and colleagues (2024)(2024). In this
work, the authors combined generalizations of work by Fechner and classic signal detection
theory to show how internal noise properties that accompany stimulus representation can
explain so-called “power law” intensity percepts. This unifying framework thus elegantly links
both relative and absolute psychophysical judgments to stimulus properties in the environment.
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Here we propose a framework to discover how to relate any two psychological processes — not
just relative and absolute intensity judgments. Specifically, we have through our case study
focused on the “metaperceptual” RPF. This form of the RPF is thus not limited to judgments
about the subjective evaluation of stimuli in the world (absolute magnitude estimation
judgments), but is also capable of handling introspective or metacognitive judgments
(judgments about one’s own processing capacity or one’s own internal experience). In other
words, the metaperceptual RPF is sufficiently general so as to evaluate the relationship between
the world and first-order internal representations of the world, and between those first-order
internal representations and higher-order metacognitive or introspective evaluation of them
(Brown et al., 2019; Overgaard and Mogensen, 2017)(Brown et al., 2019; Overgaard and
Mogensen, 2017). Thus, the metaperceptual RPF directly addresses recent calls for a
psychophysical introspective research program (Fleming, 2023; Kammerer and Frankish, 2023;
Morales, 2024; Peters, 2024)(Fleming, 2023; Kammerer and Frankish, 2023; Morales, 2024;
Peters, 2024) as a targeted technique for understanding phenomenological experience in
general (Peters, 2024, 2022)(Peters, 2024, 2022), building upon previous research programs
seeking to isolate subjective experience for scientific study by holding performance constant
(Lau, 2008; Lau and Passingham, 2006; Morales et al., 2022; Peters et al., 2017b)(Lau, 2008;
Lau and Passingham, 2006; Morales et al., 2022; Peters et al., 2017b). We expect that other
field- and question-specific variants of the RPF will emerge, e.g. relating confidence judgments
to reaction times, clarity assessments to criterion bias, or even extension to triads of variables or
more.

Final thoughts

In sum, the RPF framework holds great promise as a foundation for the next generation of
psychophysics. To facilitate the exploration and use of this framework across disciplines and
psychological areas of study, we encourage interested readers to make use of and extend the
open-source RPF toolbox (https://github.com/CNClaboratory/RPF).
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Supplemental Material

Supplementary information for fitting and assessing the RPF

Maximum likelihood estimation (MLE) fitting of non-probabilistic
psychometric functions

When a psychometric function y(x; 0) is fitted to response probabilities (e.g. p(correct)), the
likelihood of the data under y is derived by treating trial-level outcomes as Bernoulli trials. This
entails assuming that for each level of stimulus strength x, the probability of a “success” on a
given trial (e.g. a report of stimulus detection, or a correct discrimination response) is constant
and independent of outcomes on other trials. Under these assumptions, the joint probability of
all trial outcomes is the product of the probability of each individual trial outcome. Thus, if the
probabilities of a trial outcome t being 0 or 1 at stimulus strength x are given by

Pyior, = V(X 0)

(81)
Porogx = 1 = W06 6)
then the likelihood of all trial outcomes t according to w(x;0) is given by
n
LeI9=11p,," (S2)

where n_ is the number of occurrences of trial outcome t for stimulus strength x. Using the

more convenient log likelihood,

logL(B]|t) =) nt‘x log Py x (S3)

t,x

The MLE estimate of 0 is then the value of 8 that maximizes likelihood (or equivalently, log
likelihood).

However, since this approach to MLE fitting assumes a probabilistic psychometric function, it

cannot be applied to non-probabilistic psychometric functions fitted to variables such as d’,
which raises the question of how fitting should proceed in such cases.
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A simple approach would be to minimize the sum of the squared errors of the fit at each level of
x. When the errors of the fit can be assumed to be normally distributed with constant variance,
there is a direct relationship between SSE and log likelihood given by

1 SSE,
logL(®) =——+n log( - ) (S4)

and the parameters 6 that minimize SSE also maximize likelihood (Burnham and Anderson,
2002)(Burnham and Anderson, 2002).

However, such assumptions may not always hold. For instance, while the sampling distribution
of d’is approximately normal, its variance is not constant (Macmillan and Creelman, 2004;
Miller, 1996)(Macmillan and Creelman, 2004; Miller, 1996). For a fixed, unbiased criterion, the
sampling variance of d’ increases as the true value of d’ increases. Additionally, for a fixed value
of true d’, sampling variance depends on the true hit rate and false alarm rate, with values
closer to 0 or 1 for either variable leading to higher variance in the estimated d’. For cases such
as this, SSE cannot be used to compute likelihood, and minimizing SSE will not give a
maximum likelihood estimate. Not being able to compute likelihood also hinders the ability of the
fit to be assessed in conventional model comparison analyses, which require knowledge of the
fit's likelihood (Burnham and Anderson, 2002)(Burnham and Anderson, 2002).

Thus, where possible, it is always preferable to have an expression for the likelihood of the data
given the model which makes minimal assumptions about the data being fitted. The likelihood
function can then be used as a basis for MLE fitting.

Below we derive methods for MLE fitting of psychometric functions to three variables of interest:
d’, meta-d’, and mean rating. In each of these cases, we use likelihood functions that assign
probabilities to trial-level data using an appropriate model, which only requires making the
standard assumption that trial outcome probabilities are independent across trials. All of these
methods are implemented in the RPF toolbox (https://github.com/CNClaboratory/RPF).

Scaled psychometric functions

In considering how to approach fitting a psychometric function to non-probabilistic dependent
variables, we first note that the function to be fitted cannot be a function that ranges from 0 to 1
to model response probabilities, e.g. as in the Weibull function given in Eq. 1 of the main
manuscript. In the general case, the dependent variable to be fitted cannot be assumed to have
an upper bound on its possible values, and so the fitted psychometric function cannot assume
an a priori maximum value.

However, just as in the modeling of response probabilities we use the lapse rate parameter A to

allow for the possibility that asymptotic performance may not reach the maximal value of 1 even
for maximal or arbitrarily large values of x, similarly it may be reasonable in certain cases to
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posit a practical upper bound for a non-probabilistic dependent variable to which it asymptotes
as x increases. This asymptotic upper bound can be captured using a parameter of the fitted
psychometric function. To differentiate this parameter for asymptotic performance from the
probabilistic lapse rate A, we here give it the general name w.

Thus, a simple way to adapt any probabilistic psychometric function w(x; a, B, v, A) to fita
non-probabilistic dependent variable is to adapt its formula so that it ranges over [y, w] rather
than [y, 1-A]. For instance, for the probabilistic Weibull function

\B
Wi oByv, )=y +1—-2A— Y)[l —e (“)] (S95)

we can rewrite this as a scaled Weibull function
W (x; =y+ (0 —-Y)|1- aol
s(x’ aByw)=y+ (®-=-1yY) e (S6)

Similar approaches can be used to adapt any probabilistic psychometric function. We use the
general term scaled psychometric functions to refer to functions that have been adapted to
apply to non-probabilistic dependent variables by virtue of ranging from y to w.

dl
In line with the above discussion, here we consider the question of how to perform an MLE fit of
a scaled psychometric function ys to a set of d’ data over a set of x values.

Using the upper bound on computed d’ to inform w

The classical signal detection theory (SDT) model (Macmillan and Creelman, 2004)(Macmillan
and Creelman, 2004) models a task in which an observer is repeatedly presented with stimuli
from two stimulus classes denoted S1 and S2, and on each trial must categorize the presented
stimulus by responding “S1” or “S2”. The SDT measure of sensitivity d’ measures the
signal-to-noise ratio of perceptual evidence occurring under presentations of S1 and S2, and is
computed from empirical hit rate (HR) and false alarm rate (FAR) data in accordance with the
following equations:

n(response="S2" N stimulus=S2)

n(stimulus=S2) (87)

HR = p(response = "S2" | stimulus = S2) =
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n(response="S2" N stimulus=S1)
n(stimulus=S1)

FAR = p(response = "S2" |stimulus = S1) =

d' = z(HR) — z(FAR)

where n denotes a trial count function returning the number of trials for which the specified
condition is true, and z is the inverse of the standard normal CDF. Hereafter, we use “resp” and
“stim” to abbreviate occurrences of “response” and “stimulus” in equations.

If either of the empirical HR or FAR equals 0 or 1, then d’ computed in the above way is infinite.
Typically, such cases can be considered to be an artifact of noisy data for which the “true” HR
and FAR are both greater than 0 and less than 1, rather than a veridical measurement of infinite
d’. To circumvent this numerical issue, it is standard practice to use an adjustment to the
computed HR and FAR to ensure a finite value for estimated d’ (Macmillan and Creelman,
2004)(Macmillan and Creelman, 2004). For instance, one approach is to add 0.5 to every
response count cell before computing d’ (Brown and White, 2005; Hautus, 1995)(Brown and
White, 2005; Hautus, 1995), which can be thought of as adding one “dummy” trial for each of S1
and S2, treating each of these as counting halfway towards “S1” and “S2” responses. More
formally,

__ n(resp="S2" N stim=52)+0.5

adj n(stim=S2)+1
__ n(resp="S2" Nstim=51)40.5
FARadj - n(stim=51)+1 (S8)

d'adj = Z(HRadj) - Z(FARadj)

This adjustment scheme has the effect of imposing a maximum value for computed d’, which
occurs in the case where HR,4 and FAR,q take on their maximum and minimum possible
values, respectively:

_ n(stim=S2)+0.5

adjmax ~ n(stim=S2)+1
_ 0.5
I:ARadj min ~ n(stim=S1)+1 (39)

d'adj max - Z(HRadj max) - Z(FARadjmin)

Thus, when fitting d’,q; data with a scaled psychometric function, d’,y max Presents a natural upper
bound for the value of w. It may be desirable to constrain w to equal d’,g max in certain cases
where it can reasonably be assumed that asymptotic performance is very high, e.g. to improve
the stability of psychometric function fits for data with low trial counts. More complex

42


https://paperpile.com/c/nWNksy/jhxr
https://paperpile.com/c/nWNksy/jhxr
https://paperpile.com/c/nWNksy/QToG+Myqo
https://paperpile.com/c/nWNksy/QToG+Myqo

approaches might involve making assumptions about how factors like lapse rate and asymptotic
criterion determine alternative values for HR,4 max and FAR, 4 min, and thus arrive at an alternative
value for d’,g max-

MLE fitting of a psychometric function to d’

The general idea behind the following is to use fitted d’, in conjunction with empirical values for
the criterion ¢, to compute a “fitted” HR and FAR at each level of x. These can then be used to
assign probabilities to single trial outcomes, which in turn can be used to compute likelihood in
the general way described above. This approach is conceptually similar to the MLE estimation
of meta-d’, in which fitted meta-d’ is used in conjunction with the empirical ¢’ to assign
single-trial probabilities to type 2 outcomes (Maniscalco and Lau, 2014, 2012)(Maniscalco and
Lau, 2014, 2012).

A psychometric function g with parameters 0 fitted to d’ data gives fitted values at each level of
X via

d = W 6) (S10)

We may consider these as being related to “fitted” HRs and FARSs via

€, = =[iR ) - o(Fa% ) (811)

but this does not provide sufficient information for computing unique values for ﬁEx and F/A\Rx.

However, we can make progress by taking the empirically computed criteria c_as givens, where

¢, =3 (z(HR ) + z(FAR )) (S12)

Using the empirical d'x and c_, one can solve for the exact values of HR, and FAR,. If one
instead used the estimated Zl\'x and the empirical c in this calculation, one would compute
estimated values of ﬁEx and EA\RX whose degree of error depends on the error in :1\'x. These

estimated ﬁﬁx and EA\RX are given by
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L - (S13)
FARx = CD(— 2" — cx)

where @ is the standard normal CDF. These imply estimated miss rates (MEX) and correct

rejection rates (ER\RX):

MR =1 - HR
X X

— — (S14)
CRR_ =1 — FAR
X X

For convenience of notation, we can re-express these as probabilities for every kind of stimulus
classification outcome as

—

pe r="82"|s=S82,x = HRx
pe r="S2"|s=S1,x = FARx
— (8195)
pe r="S1"|s=S2,x = MRx
pG r="S1"|s=S1, x - CRRx
and then write the likelihood function as
logp

log L(6 | data) = r}gjxn 0 rls.x (S16)

rls,x

where LN is shorthand for the trial count n(resp = r | stim = s N strength = x), r can take on

values “S1” and “S2”, and s can take on values S1 and S2.
Thus, by considering estimated d’ alongside empirical ¢, we are able to assign probabilities to

each trial outcome and use those trial outcome probabilities to compute likelihood in the usual
way. We can interpret the MLE fit derived from this approach as telling us what psychometric
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function parameters 8, taken in conjunction with the empirical values of €. maximize the

likelihood of the subject’s stimulus classification responses for each stimulus type.
An alternative way of thinking about this approach is that the full parameter set for the model is

A

0 = {aBy ¢} (817)

where q, 3, v, ® are parameters of the scaled psychometric function determining each d'x, and ¢

A
is a vector of modeled c values. This parameter set enables calculation of each P s
However, since we are only interested in estimating the psychometric function of d’, we
A
constrain all elements of ¢ to be equal to their corresponding empirical c values, leaving only

a, B, v, w as free parameters in the model fit. The ML estimate of the full model is then given by
solving

0 = arg max L(6 | data), subjectto: Vx /c\x =c (S18)

and taking a, B, v, w € 6" to be the ML parameter estimates of the psychometric function for d”.

Another approach to fitting d’ might involve directly fitting the HRx and FARx data using the usual

MLE fitting method for probabilistic variables, and using these fitted curves to compute a fitted o’
curve using the standard equation for d’. However, in our experience this method is ineffective
and gives very unstable and problematic fits to the d’ data, necessitating the alternative
approach described above.

meta-d’

Let us first consider the approach to MLE fitting of meta-d’ for a single set of data (Maniscalco
and Lau, 2014, 2012)(Maniscalco and Lau, 2014, 2012), and then adapt this approach for use
with fitting a psychometric function.

MLE fitting of meta-d’

We characterize the likelihood of type 2 responses (e.g. confidence ratings) conditional on type
1 outcomes (correct and incorrect “S1” and “S2” responses) as
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log L(6 | data) = yzs‘,r s 108 Pg i (819)

where L. is shorthand for the trial count n(conf = y | stim = snresp = r), y can take on

valuesin{1,2,...,N __ }where N __ is the number of available ratings on the confidence
ratings ratings

rating scale, r can take on values “S1” and “S2”, and s can take on values S1 and S2.

Po s are type 2 response probabilities according to some model parameterized with 8, where

the subscript notation is the same as that of s These probabilities correspond to points on

Is,
the type 2 ROC curves for “S1” and “S2” responses and thus characterize type 2 sensitivity.
In the meta-d’ model, the type 2 probabilities P s are characterized in terms of a type 1 SDT

model whose parameters are

= {meta-d', meta-c, meta- meta- ]
0 { eta-d', meta-c, meta €, gy eta €, gy

(S20)

where the “meta-" prefix emphasizes that these type 1 SDT model parameters are used to
characterize type 2 probabilities. Meta-d’ and meta-c correspond to d' and c in the standard SDT
model, and meta-c_, . and meta-c_, . are vectors of type 2 criteria for producing type 2

responses, each of length Nratings — 1. Taken together, these parameters determine all Py s via

standard probability calculations using the SDT model.

In fitting this model to the data, we constrain meta-c such that it yields a relative criterion in the
meta-d’ model equal to the empirical ¢’ computed from the data. The relative criterion is defined
as ¢' = ¢/d', and so this constraint amounts to setting meta-c = ¢'- meta-d'. We also constrain
the type 1 and type 2 criteria so that they stand in the appropriate ordinal relationships to each
other on the SDT decision axis, as summarized by a Boolean function C(6) which returns 1 if
the criteria are in appropriate ordinal relationships and 0 otherwise.

Fitting the meta-d’ model thus consists in solving the optimization problem

8 = arg meax L(0 | data), subjectto: meta-c' = ¢', C(B) =1 (S21)

and taking meta-d’ € 6* to be the ML estimate of meta-d".

Thus, the meta-d’ model characterizes the type 2 sensitivity exhibited by a set of type 2 data in
terms of what d’ value in a standard SDT model would maximize the likelihood of those type 2
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data, provided that the model’s relative criterion ¢’ is identical to the ¢’ computed from the same
data set.

For more details on these methods, please see (Maniscalco and Lau, 2014)(Maniscalco and
Lau, 2014).

MLE fitting of a psychometric function to meta-a’

The approach for MLE fitting of meta-d’ described above can be straightforwardly adapted to an
MLE fit of a psychometric function describing meta-d’ as a function of stimulus strength x.
Essentially, this adaptation consists in performing the same fit of the meta-d’ model to every
level of x as described above, with the exception that each meta—d'x is determined not via Nx

separate meta-d’ parameters, but rather via the four parameters of a fitted psychometric
function which determine meta-d’ at each level of x.

First, we expand the likelihood function to take into account type 2 responses conditional on
type 1 outcomes at each level of x:

logL(f |data) = ¥ s logpy oo (S22)

VST,

where LN, is shorthand for the trial count n(conf = y | stim = sNresp = r Nstrength = x),

|s,r,
and Po s employs similar notation.

Second, we expand the model such that it is characterized by parameters

0 = {oc, B,v, w, meta-c, meta—cz',,sr,, meta—cz,,,sz,,} (S23)

where meta—c is a vector of length Nx containing values of meta-c at every level of x, meta-c, -

and meta—c2 vsn AT matrices of size (Nx, N — 1) containing type 2 criteria for “S1” and “S2”

ratings
responses at every level of x, and «, 3, v, w are parameters of the psychometric function for
meta-d’ such that

—_—

meta-d' = Y(x; o, B, v, w) (S24)

At every level of x we apply the same constraints as in the standard meta-d’ model fit, such that
meta—c’x = c'x and c(ex) = 1 for all x, where ex indicates the subset of the parameters in 6
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applying to the specified value of x. This latter constraint ensures that within each level of x, the
criteria of the meta-d’ model stand in appropriate ordinal relationships.

Fitting the meta-d’ model for a psychometric function thus consists in solving the optimization
problem

0 = arg meax L(0 | data), subjectto: Vx meta—c'x = c'x, C(Gx) =1 (S25)

and taking o, B, y, w € 6* to be the ML parameter estimates of the psychometric function for
meta-d’.

Mean rating

In experiments using a rating scale (e.g. as of confidence, visibility, etc.) with three or more
rating options, it may be of interest to fit a psychometric function to the mean rating across
levels of stimulus strength x. Below we demonstrate that the psychometric function for mean
rating can be expressed as a simple sum of psychometric functions fitted to cumulative rating
probabilities of the form p(rating > y), each of which can be fitted with standard MLE methods
for probabilistic variables.

Expressing mean rating in terms of cumulative rating probabilities

Consider a rating scale consisting of options {1, 2, ..., Nratings} where Nratings (or N, for short) is
the number of available ratings on the rating scale, and N,z 2. Let R be a random variable for

the rating observed on any given trial. Then the mean rating across trials is given by

=
=

R=Y y-PR=1Y) (S26)
y=1

The P(R = y) terms can be expressed in terms of cumulative probabilities via

1 - PR = 2), y=1
PR = y) = PR2y) - PRzy+1), 2<y< N —1 s27)
P(RZNR), y=N,
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Combining Egs. S26 and S27 and simplifying, we can express mean rating in terms of
cumulative probabilities as

NR—l
R=1-PR22)+| X% y (PR2y) — PR=y+1)| + N, P(R=N,)
y=2
J— NR
R=1+ Zzy-P(RZy)—(y—l)'P(RZY)
e
J— NR
R=1+ ZZP(RZJ’) (S28)
e

Thus, mean rating across all trials can be expressed as the sum of the cumulative probabilities
P(R = y) over all values y in the rating scale.

MLE fitting of a psychometric function to mean rating

Now consider an experiment using several levels of stimulus strength x. We can compute the
probability that ratings reach some threshold value y at each level of x as P(R = y | x), and
since each individual trial has a Boolean outcome for whether its rating reaches threshold or

not, the P(R > y | x) data can be fitted by a psychometric function with standard MLE methods
for probabilistic variables as

P R=y|x) = q;(x; ey) (529)

N

By the above logic, we may then express a psychometric function for mean rating Ex in terms of

the sum of fitted psychometric functions for /I;yx ateach level of y > 2 as

N
R

1+ 3 Pyx(RZylx)
y=2 "~

=l )
I

" (S30)

R

1+ 3 q;(x; ey)

y=2
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Because each /I;yx is derived via MLE, Ex gives an MLE fit to the mean rating data Ex.

Note that due to the link between Eqgs. S26 and S28, the MLE approach in Eq. S30 is equivalent
to fitting the rating probabilities /ﬁyx(R = y | x) for all but one value of y (since the estimated

rating probability for the final y can be inferred from the others). This is intuitive, as a trial-level
MLE fit to mean rating requires assigning a probability to the rating outcome on each trial, which

in turn requires estimation of each gyx(R = y | x). However, for the sake of fitting psychometric

functions, it is more convenient to work with Eq. S30 and estimate ﬁyx(R > y | x) since these
functions will tend to be monotonically increasing with x, in agreement with the behavior of

typical psychometric functions, whereas this is not the case for /I;yx(R = y|x).

Nonparametric RPF AUC analysis: methodological considerations

As discussed in the main manuscript, there may be cases where it is desirable to estimate RPF
AUC nonparametrically. Here we discuss methodological considerations for this approach in
more detail.

Full interpolation

If neither P, nor P, data are fitted with parametric functions, then RPF AUC can be estimated
nonparametrically by summing the areas of the trapezoids formed by linear interpolation over
the plot of P, vs. P;. The RPF toolbox (https://github.com/CNClaboratory/RPF) performs this
interpolation with the interp1 function of Matlab, which requires the input list of x-values to be
unique and sorted in ascending order. Thus, the following preprocessing of the data is
conducted:
1. The P, data is sorted in ascending order, with the P, data subject to the same
re-ordering such that all (P,, P,) data pairs remain intact.
2. For any P, value that occurs more than once, the corresponding (P, ;, P,;) pairs are
replaced with a single (P’;, P’) pair where P’, is the recurring P, value and P, is the
average of the P,; values.

Partial interpolation

Alternatively, it is possible to construct an RPF by fitting a psychometric function F, to P, data
and estimating the function F, of P, data by interpolation. This allows the standard computation
of the RPF as P, = F,(F,'(P,)), treating the interpolation of the P, data as the function F,.
However, it is in general not possible to interpolate P, and fit P,. In this case, the interpolated P,
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function will in general not be monotonic with x, which prevents computation of F,”'(P;) since not
every P, value will map onto a unique x value.

Constraints on P, intervals, and possible expansions

Under full interpolation, since interpolation cannot extrapolate beyond the P, data, the widest
possible P, interval over which the RPF can be computed is the one defined by the minimum
and maximum values in the P, data. Under partial interpolation, although the fitted F, function
can extrapolate beyond the P, data, the interpolated P, data are still constrained to range over
the minimum and maximum x values used in the experiment (call them Xeupt min @NA Xexpt max)-
Thus, the RPF can only be computed over the fitted P, interval corresponding to this
experimentally constrained x interval, i.e. over the P, interval [F(Xexpt min)s F1(Xexpt max)]-

However, in some cases it may be reasonable to assume theoretical (P, P,) data pairs
corresponding to the minimum and/or maximum possible values for the variables in question,
which can then be used to expand the P, interval beyond the constraints imposed by the data.
For instance, if P, and P, correspond to d’ and meta-d’, it is reasonable to assume that when
stimulus strength is minimal (x = 0), it must also be the case that P, = P, = 0 since both d’and
meta-d’ have chance values of 0. In this case, the lower bound of the empirically constrained P,
interval for the fully interpolated RPF could be extended by appending the theoretical (0, 0) data
pair to the empirical (P, P,) data. Similarly, if P, and P, correspond to p(correct) and p(high
rating), theoretical or empirical considerations might justify the assumption that when x takes on
its maximal value (or an arbitrarily high value if there is no maximum), both p(correct) and p(high
rating) should be expected to be near their ceiling values of 1, in which case the upper bound of
the empirically constrained P, interval for the fully interpolated RPF could be extended by
appending the theoretical (1, 1) data pair to the empirical (P, P,) data.

Such assumptions are similar to the assumptions one might sometimes make in setting a priori
values for y (chance rate) and/or A (lapse rate) in fitting psychometric functions. A similar
approach is used in the nonparametric estimation of area under the ROC curve in the
calculation of A, (Pollack and Hsieh, 1969)(Pollack and Hsieh, 1969), in which the theoretical
(false alarm rate, hit rate) data points (0, 0) and (1, 1) are appended to the empirical data to
allow calculation of the area over all possible values of false alarm rate.

In certain cases, experiments may include presentation of stimuli at x = 0 (e.g., zero contrast
grating stimuli or equivalently, grating-absent stimuli). For such stimuli, accuracy measures such
as p(correct) and d’ are undefined if they pertain to discrimination of stimulus features (e.g.
grating tilt), since there is no such feature present to begin with. However, other measures such
as p(high confidence) and reaction time can still have defined values for x = 0 stimuli. If
constructing an RPF using one of each type of variable — say, p(correct) for P, and p(high
confidence) for P, — then the variable that is defined at x = 0 (e.g. p(high confidence)) will have
one more data point than the one that is not (e.g. p(correct)). However, since the variable that is
undefined at x = 0 must be so by virtue of being an accuracy measure, it should also have a
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natural chance value that can be assumed to hold at x = 0 (e.g. 0.5 for p(correct) in a
two-alternative task). (Although accuracy measures are undefined at x = 0, assuming a chance
value here can be justified by considering this to be the limiting value that the accuracy measure
approaches as x becomes arbitrarily close to 0.) Thus, in such cases it is natural to append a
theoretical chance value for the accuracy measure at x = 0 (e.g. p(correct)) and use this in
conjunction with the empirical data collected at x = O for the other variable (e.g. p(high
confidence)) to even out the number of data points in P, and P, and form a new (P, P,) data
pair that extends the lower bound of the P, interval to its minimal possible value corresponding
tox=0.

Nonparametric RPF AUC analysis: statistical considerations

As discussed in the main manuscript, there may be cases where it is desirable to estimate RPF
AUC nonparametrically. However, this invites the question of whether nonparametric methods
are as effective as parametric methods in estimating the true RPF AUC value. Here we
investigate this question using computational simulations.

Our overall approach is to repeatedly simulate data from a diverse range of known RPFs, and
then use the simulated data to estimate RPF AUC with the methods of fitting, partial
interpolation, and full interpolation, as described in the previous section. We can then compare
the estimated AUCs from each method to the known true AUC to assess how well each method
performs. We also investigate the influence of trial counts and P, interval size on the results.

We take our simulated task to be a simple binary classification of a stimulus whose strength can
range over [0, 1] (e.g. discriminate whether a grating of contrast x is tilting left or right) along
with a binary confidence rating (low or high). We assume the task has equal stimulus priors. We
take the dependent variables for RPF analysis, P,and P,, to be p(correct) and p(high rating),
respectively.

We began by defining four sets of “true” Weibull functions (see Eq. 1 in the main text) for each
of F; and F,. We defined the parameters 8 = (a, 3, v, A) of the four F, functions by taking every
possible combination of a €{0.3,0.7}and B, €{1,3}, withy = 0.5and A = 0.01 for each

function. Similarly, we defined 6 for the four F, functions by taking every possible combination of
a,€{0.3,0.7}and B, €{1,3}, withy, = 0.1and A, = 0.1 for each function. This provided a

diverse set of functional forms for both F;(x;8) and F,(x;0) (Figure $1). Each F,(x;0) and F,(x;8)
function from these sets can then be combined to define an RPF, leading to 16 RPFs in total
that exhibit a wide range of behaviors (Figure S2).
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Figure S1. Generating functions for F,(x) and F,(x) in the simulations.
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Figure S2. RPFs constructed from the generating functions for F,(x) and F,(x) in the simulations.

For each simulated experiment, we defined 6 values of x evenly spaced between 0.1 and 0.9,
i.,e.x€{0.1, 0.26, 0.42, 0.58, 0.74, 0.9}. For each value of x, we simulated accuracy on each
trial by setting accuracy to 1 if a pseudorandom number drawn from the standard uniform
distribution was less than F;(x;0), and 0 otherwise. Similarly, we simulated rating on each trial by
setting rating to 2 if a pseudorandom number drawn from the standard uniform distribution was
less than F,(x;0), and 1 otherwise. Different simulations used different numbers of trials per level
of x, with values N € {30, 50, 100, 200, 500, 1000}.

trials per x

We then used the simulated data to estimate the RPF using three methods:
1. fitting: fit Weibull functions to both P, and P, using MLE; use these fits to construct the
fitted RPF
2. partial interpolation: fit a Weibull function to P, using MLE, and use linear interpolation
on P,; use these to constructed the partially interpolated RPF
3. full interpolation: perform linear interpolation directly on the plot of P, vs. P, to
construct the fully interpolated RPF
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In fitting P (i.e. p(correct)), we constrained y to the chance value of 0.5, and allowed o, B,
and 7\1 to be free parameters. In fitting P, (i.e. p(high rating)), we allowed all of a,, BZ, Y, and }\2

to be free parameters. We performed these fits with the RPF toolbox
(https://github.com/CNClaboratory/RPF), which also uses functions sourced from the
Palamedes toolbox version 1.11.11 (Prins and Kingdom, 2018)(Prins and Kingdom, 2018).

For each simulated data set, we computed true RPF AUC and the estimated RPF AUC for each
method over three p(correct) intervals:

1. maximum p(correct) interval over the presented x values

2. p(correct) interval = [0.7, 0.8]

3. p(correct) interval = [0.74, 0.76]

We consider the maximum possible p(correct) interval over the presented x values because full
interpolation cannot extrapolate beyond the empirical P, data®, which itself is limited to the range
of presented x values. Thus, we constrain all analyses for the maximum p(correct) interval to
operate over the presented x values to make for a fair comparison among all methods.

The maximum p(correct) interval over the presented x values depends on the case being
considered. For the true RPF, this p(correct) interval is given by the true values of P1 = Fl(x; 0)

occurring at the minimum and maximum presented x values, i.e. [Fl(xmin; 6), Fl(xmax; e)] Under
fitting or partial interpolation, wherein p(correct) is fitted by /I; = F 1(x; 8) the p(correct) interval
is given by the fitted /151 values at the minimum and maximum presented values of x, i.e.
[Fl(xmin; 6) Fl(xmax; 6)] Under full interpolation, the p(correct) interval is given by the minimum

and maximum empirical P, values, i.e. [P

P ]
1min’ ~ 1 max

For each of these cases, we computed RPF AUC over each interval via numerical integration
using the methods contained in the RPF toolbox (https://github.com/CNClaboratory/RPF).

Thus, in total, we simulated data from 16 RPFs for 6 different values of number of trials per level
of x, for a total of 96 settings for simulated experiments. For each simulation setting, we

estimated RPF AUC and EZ over 3 p(correct) intervals with the 3 methods of fitting, partial

interpolation, and full interpolation. For each simulation setting, we ran 1000 simulated
experiments.

% In the previous section, we discussed cases where the P, interval under interpolation can be expanded
by appending theoretical (P, P,) data pairs. For the present simulation, although we can safely assume
p(correct) = 0.5 at x = 0, there is no theoretical basis for assuming an a priori value for p(high rating) at x
= 0, nor for assuming values for either variable at x = 1. Thus, in this case interpolation of the RPF is
limited to the empirical P, data.
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Occasionally it occurred that for a simulated data set, the analysis could not proceed due to
invalid AUC data occurring for at least one method applied to at least one p(correct) interval.
This could occur due the MLE fit to either F, or F, data producing invalid parameter estimates,
such as infinite slope, due to noise in the data. It could also occur due to at least one RPF
estimation method not having a maximal p(correct) window that fully spanned the pre-specified
p(correct) interval of [0.7, 0.8]. This could occur e.g. if the maximum empirical p(correct) value in
the simulated data was below 0.8, or if the maximum fitted p(correct) value at x,,, was below
0.8. In these instances, the simulated data were discarded to ensure that for all data being
analyzed, all methods had valid AUC results for all p(correct) intervals. When data was
discarded in this way, we conducted extra simulation repetitions to ensure that every simulation
setting wound up with 1000 repetitions containing fully valid data. Table S1 summarizes the
proportion of total repetitions that had fully valid data for each trial count setting.

30 50 100 200 500 1000

trials per x

p(valid) 0.8903 0.9271 0.9637 0.9912 0.9996 1

Table S1. Proportion of simulation repetitions containing fully valid data for each level of N

trials per x

In Figures S3 - S7, we show that over different P, intervals and RPF parameter settings, partial
interpolation and full interpolation exhibit comparable overall performance to MLE fitting with
regards to retrieving the true AUC, with some methods performing slightly better in some
contexts than others. We observed similar AUC results in simulations using the P, interval [0.74,

0.76], and similar Fz results across all simulation settings (data not shown).
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Figure S3. Accuracy and precision of RPF AUC estimation are robust to estimation method over
maximal P, intervals. RPF AUCs estimated from simulated data using methods ff ~ fitted, fi ~ partial
interpolation, ii ~ full interpolation, and compared to true AUC computed from known generating RPF, for

trials per x = 100. Error bars show standard deviation across simulations.
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Figure S4. Accuracy and precision of RPF AUC estimation are robust to estimation method over
narrower P, intervals. RPF AUCs estimated from simulated data using methods ff ~ fitted, fi ~ partial
interpolation, ii ~ full interpolation, and compared to true AUC computed from known generating RPF, for

trials per x = 100. Error bars show standard deviation across simulations.
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max p(correct) interval

over presented x values p(correct) interval = [0.7, 0.8] p(correct) interval = [0.74, 0.76]
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Figure S5. Mean absolute error in AUC estimation across all parameter settings for F; and F, as a

function of fitting method, number of trials, and P, interval. ff ~ fitted, fi ~ partial interpolation, ii ~ full

interpolation. The Ny per x X-axis is displayed on a logy, scale, and numbers next to each data point show
the corresponding Nyias per x fOr clarity. Error bars show standard error of the mean across simulations.
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max p(correct) interval over presented x values
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Figure S6. Mean absolute error in AUC estimation for the max p(correct) interval, over each
permutation of parameter settings for F, and F,, as a function of fitting method and number of
trials. ff ~ fitted, fi ~ partial interpolation, ii ~ full interpolation. The Ny per x X-axis is displayed on a logg
scale. Error bars show standard error of the mean across simulations.
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Figure S7. Mean absolute error in AUC estimation for the [0.7, 0.8] p(correct) interval, over each
permutation of parameter settings for F, and F,, as a function of fitting method and number of
trials. ff ~ fitted, fi ~ partial interpolation, ii ~ full interpolation. The Ny per x X-axis is displayed on a logg
scale. Error bars show standard error of the mean across simulations.

Detailed methods for empirical case study

Participants

27 University of California Riverside students (19 female, 8 male, 26 right-handed, mean age =
20.6 (SD = 3.1)) provided written informed consent to participate in the main study. All
participants had normal or corrected-to-normal vision and normal or corrected-to-normal
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hearing, and were compensated at a rate of $10/hour for their participation. All study procedures
were approved by the University of California Riverside Institutional Review Board.

Prior to the main group-level analysis, data from individual participants were inspected for
quality. Data from six participants were excluded from the main analysis due to having
performance at or near chance levels across all motion coherence levels (n=3), having
completely flat (n=1) or excessively noisy (n=1) confidence vs d’ curves, and using a single
confidence rating on almost all trials (n=1). Therefore, 21 participants were included in the main
analyses reported here.

Stimuli & equipment

All stimuli were presented on a CRT monitor (NEC MultiSync FE2111SB-BK, width 39.6 cm,
height 29.7 cm) with refresh rate 75 Hz. A random dot kinematogram (RDK) filling the entire
screen (width x height = 43.2 x 33.1 degrees of visual angle (deg)) was presented continuously
throughout every block of trials. Dots were black on a white background, with dot size = 0.1 deg,
speed = 6 deg/sec, and lifetime = 67 ms (5 frames). When a dot’s lifetime expired, it was
removed from the screen and replaced with a new dot having a full lifetime and randomly
determined location and motion direction. At the start of each block, dots were initialized with
uniformly distributed “age,” such that on every frame refresh of the screen, one-fifth of the dots
expired and were respawned. Dots that moved outside the bounds of the screen continued their
motion trajectory from the opposite side of the screen.

Dot Density took on one of three possible values (Low = 1 dot/deg?, Medium = 3 dots/deg?, High
= 9 dots/deg?), and was varied either across blocks (Trial Structure: Blocked) or across trials
within a block (Trial Structure: Interleaved). When Dot Density decreased from trial N to trial
N+1, a randomly selected portion of the dots were deleted in order to achieve the appropriate
density. When Dot Density increased, an appropriate number of new dots were spawned with
uniformly distributed age and randomly selected location and motion direction.

A fixation cross (width = 0.35 deg) was presented in the center of the screen. Color of the
fixation cross changed depending on trial state (see below). Participants were instructed to
maintain fixation on the fixation cross throughout each block. To prevent dots from visually
interfering with the fixation cross, any dots whose locations fell inside a small circular region in
the center of the screen (diameter = 2 deg) were not displayed.

The critical stimulus event occurring on every trial was the occurrence of 533 ms of coherent
downward motion in a circular region of the screen (diameter = 8 deg) whose center was
located 7 deg to the left or right of fixation, which we will call the “region of coherence.” Motion
coherence was drawn from one of seven possible values spaced evenly between 10% and
80%, i.e. [10, 21.67, 33.33, 45, 56.67, 68.33, 80]%.

Coherent motion was created by assigning downward motion to all dots spawned with initial

locations falling within the region of coherence with probability p(motion coherence) for a period
lasting 493 ms (37 frames). Thus, onset and offset of motion coherence was temporally
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smoothed due to being yoked to dot respawning, which occurred for one-fifth of the dots on
every frame. In total, motion coherence linearly ramped up during the first 53 ms (4 frames) of
motion coherence, remained at full motion coherence for the next 427 ms (32 frames), and then
linearly ramped down during the final 53 ms (4 frames). Additionally, since motion direction for
every dot was constant throughout its lifetime, there were no sharp perceptual edges around the
perimeter of the region of coherence due to abrupt changes in dot motion direction as dots
entered and exited the region.

Procedure

Participants sat approximately 50 cm from the screen with their chins in a chinrest. Each ftrial
began with presentation of full-field random dot motion for a pre-stimulus period lasting 1 - 3 s.
Pre-stimulus duration was drawn randomly from an exponential distribution on each trial such
that the hazard rate was roughly held constant; this meant that during the pre-stimulus period,
the amount of time elapsed so far was made to be uninformative about whether the target
stimulus was about to occur. During this period the fixation cross was red in order to cue the
subject to be ready to detect impending coherent motion. Subsequently, the fixation cross
turned black and coherent downward motion appeared in one of the two circular regions of
coherence (533 ms). The region of coherence was equally likely to appear on either the left or
right side of fixation.

After stimulus offset, participants were given three seconds to report the side in which they saw
the downward movement (by pressing the 1 or 2 key) and how confident they were in their
judgment on a scale of 1 to 4 (using the 7 8 9 0 keys). On trials where participants could not
clearly make out the location of coherent motion, they were encouraged to enter a response
anyway by making a random guess. To provide feedback on registry of keyboard input, the
fixation cross turned gray after entry of the left / right decision and disappeared after entry of
confidence. The full 3 s of the response period played out even on trials where participants
entered their perceptual decision and confidence rating prior to the expiration of the 3 s time
limit. A schematic of trial structure is shown in Figure 4A in the main text.

Blocked versus Interleaved Trial Structure design

Participants underwent two trial-order conditions in which Dot Density was either presented
pseudorandomly across trials in an Interleaved design, or was Blocked by Dot Density. In the
Interleaved type trials, the density level on each trial was pseudorandomly drawn from any of
the three density levels (Low, Medium, or High); in the Blocked type trials, all trials within a block
had the same density. In both Trial Structure conditions, within each block of trials all coherence
levels were presented in pseudorandom order.

The order of the Blocked versus Interleaved Trial Structure conditions was counterbalanced
across two days of testing, such that half of participants underwent the Blocked condition on
Day 1 and the Interleaved condition on Day 2, and the other half underwent the Interleaved
condition first. Trials in both the Interleaved and Blocked conditions were presented across nine
blocks of trials per day with 84 trials in each block (12 trials per coherence level in each block).
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In the Blocked trials, Dot Density was pseudorandomly assigned to block number, subject to the
constraints that (1) blocks 1-3, 4-6, and 7-9 contained one each of the Low, Medium, and High
Dot Density conditions, and (2) density could not be identical across consecutive blocks.

Overall, participants completed 756 trials total in each of the Blocked and Interleaved Trial
Structure conditions, with 36 trials for each combination of Trial Structure (Blocked, Interleaved),
Dot Density (Low, Medium, High), and motion coherence (7 levels in total, spaced evenly
between 10% and 80% coherence). Each day of testing lasted about an hour and 15 minutes,
such that participants underwent about 2.5 hours of testing in total. Day 2 occurred between 1 -
3 days after Day 1. A schematic of Trial Structure (Blocked, Interleaved) is shown in Figure 4B
in the main text.

Prior to testing on each day, participants performed at least one block of practice trials (and
possibly more depending on the discretion of the experimenter, who monitored participant
performance during practice to ensure adequate understanding and performance of the task).
During practice, participants engaged in the same task as the main task, but also received
trial-by-trial auditory feedback regarding the correctness of their responses (high tone for
correct, low tone for incorrect). Practice blocks contained 12 trials in which the three levels of
Dot Density were pseudorandomly interleaved (even on Blocked condition days), with motion
coherence set to 100%. During the entirety of the first 6 trials of a practice block, red circles
were shown around the edges of the left and right regions of coherence in order to familiarize
the participant with what regions of the screen could potentially contain coherent motion. The
practice was designed to allow participants to become comfortable with the task and response
options, and to ensure they understood the task and key mappings for choices and confidence
ratings.

All behavioral procedures were programmed in PsychToolbox and implemented on a MacBook
Pro with OSX Version 10.9.5 running Matlab r2013b.

Detailed fitting of P, (d)

For fitting d’ as a function of x (in RPF analysis, this would be for fitting P,) we follow the
approach described above to define d’ as a function of stimulus strength x via the scaled Weibull
distribution. To fit d’ to the present empirical dataset, we set constraints to be Y = 0 (since at

chance performance, d’ = 0) and w = maximum possible d’ value achievable. This maximum

achievable value is controlled by the number of trials present in the dataset at each stimulus
level x, combined with choices about how to avoid hit and false alarm rates being 1 or 0,
respectively. Specifically, we must make decisions about what is called ‘padding’ to make the
maximum possible hit rate (HR) less than 1, with the amount less than 1 depending on the
number of trials in the condition of interest. Similarly, we want the minimum possible cell-padded
false alarm rate (FAR) to be greater than 0. The d’ that is maximum for a given cell padding is
defined as z(max HR possible with cell padding) - z(min FAR possible with cell padding).
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We accomplish this goal by ‘padding’ the number of responses in a given response category
such that no response category contains zero responses. Response categories are defined as
the combination of a type 1 response (e.g. left or right) and confidence rating (here, a rating
from 1-4). Thus, for each possible stimulus presented (here: coherent motion presented on the
left or right side of the screen), we count the number of “reported right” and “reported left”
responses, separated by the confidence level that was also reported.

Algorithmically, in our RPF toolbox (https://github.com/CNClaboratory/RPF) d”is calculated
through reliance on the scripts developed by Maniscalco and Lau (Maniscalco and Lau, 2014,
2012)(Maniscalco and Lau, 2014, 2012), which separates response data into two arrays
containing these response categories. Concretely, these two matrices nR_S1 and nR_S2 are
vectors containing the total number of responses in each response category, conditional on
presentation of S1 (e.g., ‘stimulus on the left’) and S2 (e.g., ‘stimulus on the right’). The following
description is copied from the relevant section of the RPF toolbox for clarity:

e.g. if nR S1 = [100 50 20 10 5 1], then when stimulus S1 was
presented, the subject had the following response counts:
responded S1, rating=3 : 100 times

responded S1, rating=2 50 times
responded S1, rating=1 20 times
responded S2, rating=1l 10 times
responded S2, rating=2 5 times

responded S2, rating=3 : 1 time

0 o0 ® A O° A o o° o° o°

The ordering of response / rating counts for S2 should be the same
as it is for Sl. e.g. if nR S2 = [3 7 8 12 27 89], then when stimulus
S2 was

presented, the subject had the following response counts:

responded S1, rating=3 : 3 times
responded S1, rating=2 : 7 times
responded S1, rating=1l : 8 times

responded S2, rating=1 : 12 times
responded S2, rating=2 : 27 times

d® o o° O OO o° o°

responded S2, rating=3 : 89 times

Here, each response count cell in nR_S1 and nR_S2 for each level of condition and x is padded
with a value 1/(2*nRatings) — i.e., this value is added to all response categories — where
nRatings refers to the number of available confidence ratings in the experiment (here, 4). For
example, using this number of ratings, nR_ S1 = [100 50 20 10 5 1] becomes nR S1 =
[100.125 50.125 20.125 10.125 5.125 1.125]. (Interested readers can also refer to
our toolbox README, specifically the RPF_guide(‘info’) section entitled “Fitting d’ and meta-d”
and RPF_guide(‘padinfo’), for more detailed information).
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With this approach, the present data the max cell padded d’ thus achieved is 3.8759, so we
constrain W to be 3.8759 for all conditions. Thus only o and Bn are free parameters fitted to the

data, which we fit separately for each condition.

Detailed fitting of P, (mean confidence rating and meta-d’)

To fit mean confidence as a function of x (for P,), we again used the scaled Weibull distribution
for mean confidence as described above to fit mean confidence as a function of stimulus
strength x. In these fits, no constraints were placed on any of the four psychometric function
parameters. To fit metacognitive sensitivity (meta-d’) as a function of stimulus strength x (also
for P,), we again used the custom likelihood functions described above for the meta-d’ scaled
Weibull. For each condition in this dataset, we constrained Y, = 0 and w = 3.8759 (as with the

fit for ).

Notes about group fitting for plotting

In the main text, for illustrative purposes Figures 5 and 6 show MLE fits of the RPF to the group
data concatenated across all subjects into one single large dataset containing all trials for all
individual subjects. This concatenation required an assumption about cell padding for the
purposes of avoiding HR = 1 and FAR = 0 (as described above) to avoid underestimation of the
effect of cell padding choices on the group fit relative to the effect on single-subject fits.
Specifically, because we have 21 subjects, the group data has 21 times the amount of trials of
any individual subject’s dataset. We therefore multiply the cell padding factor in the group fits by
21, such that the cell padding for the group fit would be the same fraction of total trial counts as
it was for each individual subject. This plotting approach therefore gives a better representation
of the group average over each individual subject analysis. We remind the reader that all
statistical measures were derived from single-subiject fits to each individual condition for each
individual subject, so these choices affect the visual presentation of the group data for
illustrative purposes only and have no effect on the statistical analyses and conclusions
presented in the main text.

RPF toolbox

The RPF analysis approach described here can be implemented in Matlab using the free, open
source RPF toolbox available at https://github.com/CNClaboratory/RPFE. The toolbox supports a
full analysis pipeline from raw trial-level data for a single subject to RPF analysis results and
plots for that subject’s data. It is designed to allow for an easy, out-of-the-box analysis pipeline
using only a few high-level functions while implicitly handling many of the subtleties and
complexities of RPF analysis under the hood, while still allowing for complete control and
customizability of the finer details of the analysis where desired.

The general workflow in the toolbox consists in first defining the dependent variables one
wishes to assign to the functions F, and F, and specifying any further details of the analysis
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pertaining to e.g. psychometric function fitting or interpolation, computing the dependent
variables, and defining the properties of the independent variable x. Most settings have sensible
default values which are automatically set when unspecified, allowing the user to focus on
explicitly specifying the handful of settings that are most relevant to their use case.

The analysis settings for F, and F, are stored in separate user-defined info structs. From
there, the toolbox handles all details of performing the analysis in a few high-level functions:
RPF get F to conduct fitting or interpolation for F, and F,, RPF get R to conduct RPF
analysis, and RPF_plot to plot the results. Analysis results are stored in structs F1, F2, and R,
and these structs are used by the toolbox to analyze, query, and visualize the data at a high
level of abstraction. Analysis is completely modular in the sense that any analysis settings for
F1 can be used with any analysis settings for F2 in the RPF analysis.

Computing dependent variables from trial-level data

Using the user-defined settings in F. info, and provided with an appropriately formatted
trial-level data set, the toolbox conducts data analysis and stores the result in the F.data
struct. Data are assumed to come from a task in which for every trial, one of two stimulus
classes S1 or S2 is presented and the subject attempts to discern the presented stimulus class.
Additional data such as confidence rating or reaction time may also be included.

Dependent variables

Built-in data analysis is supported for any of the following dependent variables (DVs):
p(correct)

d

p(response) (e.g. p(“yes”) in a detection task)

p(high confidence rating)

mean confidence

meta-d’

type 2 AUC (i.e. area under the type 2 ROC curve)

reaction time (RT)

Each DV is computed as a function of x and condition for subsequent RPF analysis. Additional
information pertaining to analysis details and subsequent fitting or interpolation is also provided.

Response-specific analysis

If desired, the toolbox can calculate response-specific performance, in which the DV is
computed only for a specified response type. For instance, one can define the DV to be meta-a’
for “yes” responses in a detection task, or p(correct) for “right” responses in a tilt discrimination
task. Response-specific analysis is available for all DVs except d’ (due to being undefined) and
p(response) (due to being trivial).
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Analysis of detection vs discrimination tasks

For DVs related to SDT and receiver operating characteristic (ROC) analysis — d’, meta-d’, and
type 2 AUC — calculation of the DV as a function of x differs for detection and discrimination
tasks. In detection tasks, the S1 stimulus occurs at x’s minimal value and the S2 stimulus occurs
for all greater values of x (e.g. for detecting a contrast-defined grating, the S1 “stimulus absent”
case occurs at x = 0 and the S2 “stimulus present” cases occur at each level of x > 0). In
discrimination tasks, the S1 and S2 stimuli occur at each level of x (e.g. for discriminating the tilt
of contrast-defined gratings, S1 “left tilt” and S2 “right tilt” stimuli occur at each level of x > 0, but
are undefined at x = 0). For SDT and ROC related DVs, the toolbox automatically detects task
structure from the trial-level data and adjusts its data formats and DV calculations accordingly.

Custom data analysis

If trial-level data is unavailable, or if the user wishes to analyze some other DV, it is possible to
manually define the F.data struct. Provided that it is formatted in the correct way (as can be
ascertained by consulting the toolbox documentation in RPF_guide), the full analysis pipeline
can proceed using the manually defined F.data struct.

Fitting or interpolating the data

Using the settings defined in F. info and the data analysis in F.data, the toolbox conducts
psychometric function fitting or interpolation and stores the result in the F. £it struct.

Psychometric functions

The following psychometric functions for fitting probabilistic DVs are available in the RPF
toolbox via the Palamedes toolbox (Prins and Kingdom, 2018)(Prins and Kingdom, 2018):
Weibull

Gumbel

Quick

log-Quick

Logistic

Cumulative Normal

HyperbolicSecant

These standard psychometric functions are appropriate for fitting probabilistic DVs such as
p(correct), p(response), and p(high confidence), but not for fitting non-probabilistic DVs such as
d’, meta-d’, type 2 AUC, and RT (see Supplemental Material, section “Maximum likelihood
estimation (MLE) fitting of non-probabilistic psychometric functions”). For fitting non-probabilistic
DVs, the RPF toolbox provides scaled psychometric function variants for some of the above:
Scaled Weibull

Scaled Gumbel

Scaled Quick

Scaled log-Quick

68


https://paperpile.com/c/nWNksy/jihF

The toolbox also supports fitting custom psychometric functions, as the code base accesses
psychometric functions via function handles defined in the F. info struct. For best compatibility
with the code, custom functions should have the form customFunction (params, x) where
params is an array containing values for a, B, y, and A (for a probabilistic psychometric function)
or w (for a non-probabilistic psychometric function) and x is an array of x values at which to
evaluate the psychometric function. Functions using different parameter sets can still be used,
but would require more specialized custom code to ensure e.g. that the search grids used for
setting initial parameter values in the fitting functions are constructed in a reasonable way.

Transforms of x for psychometric functions

Different psychometric functions assume different properties for the independent variable x. For
instance, the Weibull function assumes that x is expressed on a ratio scale where x = 0 is the
minimum possible value, at which the stimulus is completely absent and performance is
completely at chance. Conversely, the Gumbel function assumes x has undergone a log
transform. Thus, it is important to track what kind of x values are used with what kinds of
psychometric functions.

The RPF toolbox automatically manages all aspects of the analysis pertaining to the scale on
which x is expressed. All x values are assumed to be untransformed values expressed on a
ratio scale with a true zero, and any transformations of x are defined in a function xt fn
appropriate to the psychometric function being used and stored in a separate variable xt to
make the scale of x explicit at all times. The xt variable is always used in psychometric function
calculations. In cases where no transform is necessary, xt is set equal to x.

Psychometric function fitting methods

The toolbox supports psychometric function fitting via maximizing likelihood (MLE) or minimizing
the sum of squared error (SSE).

When the errors of the fitted function to the DV at each level of x can be assumed to be
normally distributed with constant variance, minimizing SSE is equivalent to maximizing
likelihood. When this assumption does not hold, it is preferable to fit by maximizing the
likelihood of trial-level data according to some model of the probability of trial-level outcomes,
assuming such a model is available.

The toolbox supports standard methods for trial-level MLE fitting of probabilistic DVs as well as
the novel methods introduced in this manuscript for MLE fitting of d’, meta-d’, and mean rating
based on single-trial outcome probabilities. For more information, see Supplemental Material,
section “Maximum likelihood estimation (MLE) fitting of non-probabilistic psychometric
functions”.

The toolbox supports constraining selected parameters of the psychometric function fit to a
priori values, e.g. constraining the chance performance parameter y to be 0.5 for p(correct).
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Future releases of the toolbox may implement more sophisticated options for parameter
constraint.

Interpolation

The RPF toolbox supports the interpolation approach to RPF analysis discussed in this
manuscript. Any interpolation method supported by the Matlab interpl function may be used.

The toolbox also supports options for appending a priori data to the calculated DVs to expand
the interpolation range for RPF analysis. For instance, in an RPF analysis of meta-d’ vs d’, one
might choose to append the a priori data points d’ = 0 and meta-d’ = 0 at x = 0, reflecting that
performance at x = 0 must be at chance and similar in spirit to constrainingy =0in a
psychometric function fit. Appending these a priori data points would then expand the range of
d’ values over which the RPF AUC can be computed.

The toolbox code base treats interpolation as a kind of “fit” using “parameters” corresponding to
the empirical values for x and the calculated DV at each level of x and condition, from which the
interpolated value at any x can be computed for all conditions. Thus, the code base treats F
structs in the same way regardless of whether they use fitting or interpolation. This allows
user-created code to seamlessly handle these rather different analysis techniques with a unitary
approach.

Conducting RPF analysis

Using the user-defined settings, data analysis results, and fitting results in F1 and r2, the
toolbox conducts RPF analysis via the RPF_get R function and stores the result in the R struct.

RPF AUC, average P,, and P, bounds

The toolbox estimates RPF AUC by computing P, = R(P,) for many finely spaced P, values
within a given set of P, bounds, and then using these (P,, P,) data pairs to conduct trapezoidal
numerical integration. The manner in which P, = R(P,) is computed depends on the context:

e If both F; and F, are Weibull psychometric functions, then P, = R(P,) is computed using
an analytical expression for the Weibull RPF (Eq. 5 in the main manuscript).

e |If both F, and F, are interpolated, then P, = R(P,) is computed via direct interpolation on
the plot of P, vs P,, using the interpolation method specified for F, (see Supplemental
Material, section “Nonparametric RPF AUC analysis: methodological considerations”).

e Otherwise, P, = R(P,) is estimated by computing x = F,"(P,) and then P, = F,(x) (see Eq.
2 in the main manuscript), where F, is fitted and F, may or may not use interpolation.
Inversion of F, is conducted either analytically or numerically depending on the
psychometric function involved.

Thus, in most cases the toolbox estimates RPF AUC numerically, without needing to specify an
analytical expression for R.
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By default, R contains the values for AUC and 152 over the maximum possible P, range spanned

across all conditions (see main manuscript, section “AUC approach: area under the RPF
curve”). It also contains the values for the lower and upper bounds of this maximum range and
information on their derivation, along with other supporting information pertaining to the RPF
analysis.

Subsequent analyses of AUC and 152 for a narrower set of P, bounds can be conducted with the

RPF_AUC function.

Modularity

In the RPF toolbox, RPF analysis is completely modular in the sense that any analysis settings
for F1 can be used along with any analysis settings for £2 in the construction of R.

The toolbox also gracefully handles cases where one DV is undefined at the minimal value of x
(e.g. p(correct) for a tilt discrimination task at x = 0) and the other is not (e.g. p(high confidence)
at x = 0 for the same task), allowing for RPF analysis to be conducted in such cases according
to the default or user-defined settings despite the fact that there are different numbers of data
points for P, and P,.

Visualizing the analysis results

The RPF toolbox function RPF plot provides a convenient way for analyzing the data and
analysis results contained in F1, F2, and R. In a single line of code, it can produce stand-alone
plots for the data and fits for F,, F,, and R, as well as a combined plot showing all three side by
side. The plots can be configured to display values for fitted F, and F, parameters and RPF
AUC, 152, and P, bounds. The appearance and contents of the plots are customizable using the

plotSettings struct.

Utilities
The toolbox also includes several other helpful utilities, including
e RPF eval F(F, x):computes P = F(x)ateach condition using the F struct
e RPF eval F inv(F, P):computes x = F'(P;)ateach condition using the F struct
e RPF eval R(R, P1):computes P, = R(P,)ateach condition using the R struct
e RPF structArray2fieldMatrix (F _or R): reformats the F or R structinto a
different format that may be more convenient to use for some use cases
e RPF get PF listand RPF get DV list:getinformation on the psychometric
functions and dependent variables natively supported by the toolbox, organized by

various characteristics
e RPF guide: comprehensive documentation on various aspects of the toolbox
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